sonicc commited on
Commit
c46a560
·
verified ·
1 Parent(s): 30c1d2c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -177
README.md CHANGED
@@ -1,199 +1,66 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
 
 
 
 
 
 
9
 
10
 
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
 
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
 
 
 
 
 
 
 
196
 
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - MOE
5
+ - GPT-2
6
+ - tabular
7
+ - generative
8
+ - causalLM
9
+ pipeline_tag: tabular-regression
10
  ---
11
 
12
+ # Tabby Model Card
13
 
14
+ Tabby is a post-training architecture modification for Transformer-based large language models,
15
+ enabling their use for **tabular dataset synthesis**. This specific demo checkpoint is based on [DistilGPT-2](https://huggingface.co/distilbert/distilgpt2)
16
+ and fine-tuned on the [UCI Diabetes dataset](https://www.openml.org/search?type=data&sort=version&status=any&order=asc&exact_name=diabetes&id=37),
17
+ using our novel Plain training method,
18
+ as an example of Tabby’s tabular synthesis capabilities.
19
+ Tabby enhances transformer-based LLMs by incorporating **Mixture of Experts (MoE) layers**,
20
+ allowing for better modeling of structured data.
21
+ For more details, check out our paper and GitHub repo!
22
 
23
 
24
+ - **Developed by:** University of Wisconsin-Madison
25
+ - **Shared by:** Sonia Cromp et al.
26
+ - **Model type:** MoE-enhanced GPT-2-based causal language model for tabular data
27
+ - **License:** MIT
28
+ - **Finetuned from model:** [`distilgpt2`](https://huggingface.co/distilbert/distilgpt2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
  ## Uses
 
 
 
31
  ### Direct Use
32
 
33
+ This Tabby checkpoint can be used for:
34
+ - High-fidelity synthesis of diabetes patients based on the [UCI Diabetes dataset](https://www.openml.org/search?type=data&sort=version&status=any&order=asc&exact_name=diabetes&id=37).
35
+ - Data augmentation for training machine learning models on the UCI Diabetes dataset.
36
+ - Comparison with other tabular synthesis approaches.
37
 
38
+ ### Downstream Use
39
 
40
+ - Further fine-tuning on other structured datasets (e.g., financial records, medical records, or survey data).
41
+ - Generating synthetic tabular data for privacy-preserving machine learning.
 
 
 
 
 
 
 
 
 
42
 
43
  ## Bias, Risks, and Limitations
44
 
45
+ This Tabby checkpoint inherits biases from the GPT-2 architecture and the UCI Diabetes dataset used for fine-tuning.
46
+ Considerations include those common to all generative models, such as:
47
+ - Bias in synthetic data feature distributions, particularly those that may reflect real-world disparities in the dataset.
48
+ - Potential hallucinations that do not perfectly match real-world distributions.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
 
50
+ ## Citation
51
 
52
+ If you use Tabby, please cite:
53
 
54
+ ```bibtex
55
+ @article{cromp2025tabby,
56
+ title={Tabby: Tabular Data Synthesis with Language Models},
57
+ author={Sonia Cromp, Satya Sai Srinath Namburi GNVV, Mohammed Alkhudhayri, Catherine Cao, Samuel Guo, Nicholas Roberts, Frederic Sala},
58
+ journal={arXiv preprint arXiv:2405.01147},
59
+ year={2025},
60
+ url={https://arxiv.org/abs/2405.01147}
61
+ }
62
+ ```
63
 
64
  ## Model Card Contact
65
 
66
+ For questions or collaborations, please reach out to [Sonia Cromp](https://socromp.github.io) at [[email protected]].