SentenceTransformer based on google-t5/t5-base
This is a sentence-transformers model finetuned from google-t5/t5-base on the all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google-t5/t5-base
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: T5EncoderModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.',
'A worker is looking out of a manhole.',
'The workers are both inside the manhole.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 557,850 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 9.96 tokens
- max: 52 tokens
- min: 5 tokens
- mean: 12.79 tokens
- max: 44 tokens
- min: 4 tokens
- mean: 14.02 tokens
- max: 57 tokens
- Samples:
anchor positive negative A person on a horse jumps over a broken down airplane.
A person is outdoors, on a horse.
A person is at a diner, ordering an omelette.
Children smiling and waving at camera
There are children present
The kids are frowning
A boy is jumping on skateboard in the middle of a red bridge.
The boy does a skateboarding trick.
The boy skates down the sidewalk.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 6,584 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 5 tokens
- mean: 19.41 tokens
- max: 79 tokens
- min: 4 tokens
- mean: 9.69 tokens
- max: 35 tokens
- min: 4 tokens
- mean: 10.35 tokens
- max: 30 tokens
- Samples:
anchor positive negative Two women are embracing while holding to go packages.
Two woman are holding packages.
The men are fighting outside a deli.
Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.
Two kids in numbered jerseys wash their hands.
Two kids in jackets walk to school.
A man selling donuts to a customer during a world exhibition event held in the city of Angeles
A man selling donuts to a customer.
A woman drinks her coffee in a small cafe.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64learning_rate
: 1e-05warmup_ratio
: 0.1batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0011 | 10 | - | 1.8733 |
0.0023 | 20 | - | 1.8726 |
0.0034 | 30 | - | 1.8714 |
0.0046 | 40 | - | 1.8697 |
0.0057 | 50 | - | 1.8675 |
0.0069 | 60 | - | 1.8649 |
0.0080 | 70 | - | 1.8619 |
0.0092 | 80 | - | 1.8584 |
0.0103 | 90 | - | 1.8544 |
0.0115 | 100 | 3.1046 | 1.8499 |
0.0126 | 110 | - | 1.8451 |
0.0138 | 120 | - | 1.8399 |
0.0149 | 130 | - | 1.8343 |
0.0161 | 140 | - | 1.8283 |
0.0172 | 150 | - | 1.8223 |
0.0184 | 160 | - | 1.8159 |
0.0195 | 170 | - | 1.8091 |
0.0206 | 180 | - | 1.8016 |
0.0218 | 190 | - | 1.7938 |
0.0229 | 200 | 3.0303 | 1.7858 |
0.0241 | 210 | - | 1.7775 |
0.0252 | 220 | - | 1.7693 |
0.0264 | 230 | - | 1.7605 |
0.0275 | 240 | - | 1.7514 |
0.0287 | 250 | - | 1.7417 |
0.0298 | 260 | - | 1.7320 |
0.0310 | 270 | - | 1.7227 |
0.0321 | 280 | - | 1.7134 |
0.0333 | 290 | - | 1.7040 |
0.0344 | 300 | 2.9459 | 1.6941 |
0.0356 | 310 | - | 1.6833 |
0.0367 | 320 | - | 1.6725 |
0.0379 | 330 | - | 1.6614 |
0.0390 | 340 | - | 1.6510 |
0.0402 | 350 | - | 1.6402 |
0.0413 | 360 | - | 1.6296 |
0.0424 | 370 | - | 1.6187 |
0.0436 | 380 | - | 1.6073 |
0.0447 | 390 | - | 1.5962 |
0.0459 | 400 | 2.7813 | 1.5848 |
0.0470 | 410 | - | 1.5735 |
0.0482 | 420 | - | 1.5620 |
0.0493 | 430 | - | 1.5495 |
0.0505 | 440 | - | 1.5375 |
0.0516 | 450 | - | 1.5256 |
0.0528 | 460 | - | 1.5133 |
0.0539 | 470 | - | 1.5012 |
0.0551 | 480 | - | 1.4892 |
0.0562 | 490 | - | 1.4769 |
0.0574 | 500 | 2.6308 | 1.4640 |
0.0585 | 510 | - | 1.4513 |
0.0597 | 520 | - | 1.4391 |
0.0608 | 530 | - | 1.4262 |
0.0619 | 540 | - | 1.4130 |
0.0631 | 550 | - | 1.3998 |
0.0642 | 560 | - | 1.3874 |
0.0654 | 570 | - | 1.3752 |
0.0665 | 580 | - | 1.3620 |
0.0677 | 590 | - | 1.3485 |
0.0688 | 600 | 2.4452 | 1.3350 |
0.0700 | 610 | - | 1.3213 |
0.0711 | 620 | - | 1.3088 |
0.0723 | 630 | - | 1.2965 |
0.0734 | 640 | - | 1.2839 |
0.0746 | 650 | - | 1.2713 |
0.0757 | 660 | - | 1.2592 |
0.0769 | 670 | - | 1.2466 |
0.0780 | 680 | - | 1.2332 |
0.0792 | 690 | - | 1.2203 |
0.0803 | 700 | 2.2626 | 1.2077 |
0.0815 | 710 | - | 1.1959 |
0.0826 | 720 | - | 1.1841 |
0.0837 | 730 | - | 1.1725 |
0.0849 | 740 | - | 1.1619 |
0.0860 | 750 | - | 1.1516 |
0.0872 | 760 | - | 1.1416 |
0.0883 | 770 | - | 1.1320 |
0.0895 | 780 | - | 1.1227 |
0.0906 | 790 | - | 1.1138 |
0.0918 | 800 | 2.0044 | 1.1053 |
0.0929 | 810 | - | 1.0965 |
0.0941 | 820 | - | 1.0879 |
0.0952 | 830 | - | 1.0796 |
0.0964 | 840 | - | 1.0718 |
0.0975 | 850 | - | 1.0644 |
0.0987 | 860 | - | 1.0564 |
0.0998 | 870 | - | 1.0490 |
0.1010 | 880 | - | 1.0417 |
0.1021 | 890 | - | 1.0354 |
0.1032 | 900 | 1.8763 | 1.0296 |
0.1044 | 910 | - | 1.0239 |
0.1055 | 920 | - | 1.0180 |
0.1067 | 930 | - | 1.0123 |
0.1078 | 940 | - | 1.0065 |
0.1090 | 950 | - | 1.0008 |
0.1101 | 960 | - | 0.9950 |
0.1113 | 970 | - | 0.9894 |
0.1124 | 980 | - | 0.9840 |
0.1136 | 990 | - | 0.9793 |
0.1147 | 1000 | 1.7287 | 0.9752 |
0.1159 | 1010 | - | 0.9706 |
0.1170 | 1020 | - | 0.9659 |
0.1182 | 1030 | - | 0.9615 |
0.1193 | 1040 | - | 0.9572 |
0.1205 | 1050 | - | 0.9531 |
0.1216 | 1060 | - | 0.9494 |
0.1227 | 1070 | - | 0.9456 |
0.1239 | 1080 | - | 0.9415 |
0.1250 | 1090 | - | 0.9377 |
0.1262 | 1100 | 1.6312 | 0.9339 |
0.1273 | 1110 | - | 0.9303 |
0.1285 | 1120 | - | 0.9267 |
0.1296 | 1130 | - | 0.9232 |
0.1308 | 1140 | - | 0.9197 |
0.1319 | 1150 | - | 0.9162 |
0.1331 | 1160 | - | 0.9128 |
0.1342 | 1170 | - | 0.9097 |
0.1354 | 1180 | - | 0.9069 |
0.1365 | 1190 | - | 0.9040 |
0.1377 | 1200 | 1.5316 | 0.9010 |
0.1388 | 1210 | - | 0.8979 |
0.1400 | 1220 | - | 0.8947 |
0.1411 | 1230 | - | 0.8915 |
0.1423 | 1240 | - | 0.8888 |
0.1434 | 1250 | - | 0.8861 |
0.1445 | 1260 | - | 0.8833 |
0.1457 | 1270 | - | 0.8806 |
0.1468 | 1280 | - | 0.8779 |
0.1480 | 1290 | - | 0.8748 |
0.1491 | 1300 | 1.4961 | 0.8718 |
0.1503 | 1310 | - | 0.8690 |
0.1514 | 1320 | - | 0.8664 |
0.1526 | 1330 | - | 0.8635 |
0.1537 | 1340 | - | 0.8603 |
0.1549 | 1350 | - | 0.8574 |
0.1560 | 1360 | - | 0.8545 |
0.1572 | 1370 | - | 0.8521 |
0.1583 | 1380 | - | 0.8497 |
0.1595 | 1390 | - | 0.8474 |
0.1606 | 1400 | 1.451 | 0.8453 |
0.1618 | 1410 | - | 0.8429 |
0.1629 | 1420 | - | 0.8404 |
0.1640 | 1430 | - | 0.8380 |
0.1652 | 1440 | - | 0.8357 |
0.1663 | 1450 | - | 0.8336 |
0.1675 | 1460 | - | 0.8312 |
0.1686 | 1470 | - | 0.8289 |
0.1698 | 1480 | - | 0.8262 |
0.1709 | 1490 | - | 0.8236 |
0.1721 | 1500 | 1.4177 | 0.8213 |
0.1732 | 1510 | - | 0.8189 |
0.1744 | 1520 | - | 0.8168 |
0.1755 | 1530 | - | 0.8147 |
0.1767 | 1540 | - | 0.8127 |
0.1778 | 1550 | - | 0.8107 |
0.1790 | 1560 | - | 0.8082 |
0.1801 | 1570 | - | 0.8059 |
0.1813 | 1580 | - | 0.8036 |
0.1824 | 1590 | - | 0.8015 |
0.1835 | 1600 | 1.3734 | 0.7993 |
0.1847 | 1610 | - | 0.7970 |
0.1858 | 1620 | - | 0.7948 |
0.1870 | 1630 | - | 0.7922 |
0.1881 | 1640 | - | 0.7900 |
0.1893 | 1650 | - | 0.7877 |
0.1904 | 1660 | - | 0.7852 |
0.1916 | 1670 | - | 0.7829 |
0.1927 | 1680 | - | 0.7804 |
0.1939 | 1690 | - | 0.7779 |
0.1950 | 1700 | 1.3327 | 0.7757 |
0.1962 | 1710 | - | 0.7738 |
0.1973 | 1720 | - | 0.7719 |
0.1985 | 1730 | - | 0.7700 |
0.1996 | 1740 | - | 0.7679 |
0.2008 | 1750 | - | 0.7658 |
0.2019 | 1760 | - | 0.7641 |
0.2031 | 1770 | - | 0.7621 |
0.2042 | 1780 | - | 0.7601 |
0.2053 | 1790 | - | 0.7580 |
0.2065 | 1800 | 1.2804 | 0.7558 |
0.2076 | 1810 | - | 0.7536 |
0.2088 | 1820 | - | 0.7514 |
0.2099 | 1830 | - | 0.7493 |
0.2111 | 1840 | - | 0.7473 |
0.2122 | 1850 | - | 0.7451 |
0.2134 | 1860 | - | 0.7429 |
0.2145 | 1870 | - | 0.7408 |
0.2157 | 1880 | - | 0.7389 |
0.2168 | 1890 | - | 0.7368 |
0.2180 | 1900 | 1.2255 | 0.7349 |
0.2191 | 1910 | - | 0.7328 |
0.2203 | 1920 | - | 0.7310 |
0.2214 | 1930 | - | 0.7293 |
0.2226 | 1940 | - | 0.7277 |
0.2237 | 1950 | - | 0.7259 |
0.2248 | 1960 | - | 0.7240 |
0.2260 | 1970 | - | 0.7221 |
0.2271 | 1980 | - | 0.7203 |
0.2283 | 1990 | - | 0.7184 |
0.2294 | 2000 | 1.2635 | 0.7165 |
0.2306 | 2010 | - | 0.7150 |
0.2317 | 2020 | - | 0.7135 |
0.2329 | 2030 | - | 0.7117 |
0.2340 | 2040 | - | 0.7099 |
0.2352 | 2050 | - | 0.7084 |
0.2363 | 2060 | - | 0.7068 |
0.2375 | 2070 | - | 0.7054 |
0.2386 | 2080 | - | 0.7037 |
0.2398 | 2090 | - | 0.7023 |
0.2409 | 2100 | 1.1912 | 0.7009 |
0.2421 | 2110 | - | 0.6991 |
0.2432 | 2120 | - | 0.6974 |
0.2444 | 2130 | - | 0.6962 |
0.2455 | 2140 | - | 0.6950 |
0.2466 | 2150 | - | 0.6938 |
0.2478 | 2160 | - | 0.6922 |
0.2489 | 2170 | - | 0.6909 |
0.2501 | 2180 | - | 0.6897 |
0.2512 | 2190 | - | 0.6884 |
0.2524 | 2200 | 1.2144 | 0.6868 |
0.2535 | 2210 | - | 0.6856 |
0.2547 | 2220 | - | 0.6843 |
0.2558 | 2230 | - | 0.6829 |
0.2570 | 2240 | - | 0.6817 |
0.2581 | 2250 | - | 0.6804 |
0.2593 | 2260 | - | 0.6789 |
0.2604 | 2270 | - | 0.6775 |
0.2616 | 2280 | - | 0.6763 |
0.2627 | 2290 | - | 0.6751 |
0.2639 | 2300 | 1.1498 | 0.6739 |
0.2650 | 2310 | - | 0.6725 |
0.2661 | 2320 | - | 0.6711 |
0.2673 | 2330 | - | 0.6698 |
0.2684 | 2340 | - | 0.6684 |
0.2696 | 2350 | - | 0.6666 |
0.2707 | 2360 | - | 0.6653 |
0.2719 | 2370 | - | 0.6638 |
0.2730 | 2380 | - | 0.6621 |
0.2742 | 2390 | - | 0.6609 |
0.2753 | 2400 | 1.1446 | 0.6596 |
0.2765 | 2410 | - | 0.6582 |
0.2776 | 2420 | - | 0.6568 |
0.2788 | 2430 | - | 0.6553 |
0.2799 | 2440 | - | 0.6541 |
0.2811 | 2450 | - | 0.6527 |
0.2822 | 2460 | - | 0.6513 |
0.2834 | 2470 | - | 0.6496 |
0.2845 | 2480 | - | 0.6483 |
0.2856 | 2490 | - | 0.6475 |
0.2868 | 2500 | 1.1309 | 0.6465 |
0.2879 | 2510 | - | 0.6455 |
0.2891 | 2520 | - | 0.6447 |
0.2902 | 2530 | - | 0.6437 |
0.2914 | 2540 | - | 0.6428 |
0.2925 | 2550 | - | 0.6415 |
0.2937 | 2560 | - | 0.6403 |
0.2948 | 2570 | - | 0.6392 |
0.2960 | 2580 | - | 0.6381 |
0.2971 | 2590 | - | 0.6371 |
0.2983 | 2600 | 1.1006 | 0.6358 |
0.2994 | 2610 | - | 0.6348 |
0.3006 | 2620 | - | 0.6340 |
0.3017 | 2630 | - | 0.6330 |
0.3029 | 2640 | - | 0.6319 |
0.3040 | 2650 | - | 0.6308 |
0.3052 | 2660 | - | 0.6300 |
0.3063 | 2670 | - | 0.6291 |
0.3074 | 2680 | - | 0.6280 |
0.3086 | 2690 | - | 0.6268 |
0.3097 | 2700 | 1.0772 | 0.6254 |
0.3109 | 2710 | - | 0.6243 |
0.3120 | 2720 | - | 0.6232 |
0.3132 | 2730 | - | 0.6224 |
0.3143 | 2740 | - | 0.6215 |
0.3155 | 2750 | - | 0.6205 |
0.3166 | 2760 | - | 0.6194 |
0.3178 | 2770 | - | 0.6183 |
0.3189 | 2780 | - | 0.6171 |
0.3201 | 2790 | - | 0.6160 |
0.3212 | 2800 | 1.0648 | 0.6153 |
0.3224 | 2810 | - | 0.6141 |
0.3235 | 2820 | - | 0.6129 |
0.3247 | 2830 | - | 0.6119 |
0.3258 | 2840 | - | 0.6109 |
0.3269 | 2850 | - | 0.6099 |
0.3281 | 2860 | - | 0.6088 |
0.3292 | 2870 | - | 0.6079 |
0.3304 | 2880 | - | 0.6073 |
0.3315 | 2890 | - | 0.6063 |
0.3327 | 2900 | 1.0398 | 0.6054 |
0.3338 | 2910 | - | 0.6044 |
0.3350 | 2920 | - | 0.6033 |
0.3361 | 2930 | - | 0.6022 |
0.3373 | 2940 | - | 0.6012 |
0.3384 | 2950 | - | 0.6003 |
0.3396 | 2960 | - | 0.5993 |
0.3407 | 2970 | - | 0.5986 |
0.3419 | 2980 | - | 0.5978 |
0.3430 | 2990 | - | 0.5967 |
0.3442 | 3000 | 1.0256 | 0.5959 |
0.3453 | 3010 | - | 0.5947 |
0.3464 | 3020 | - | 0.5937 |
0.3476 | 3030 | - | 0.5929 |
0.3487 | 3040 | - | 0.5920 |
0.3499 | 3050 | - | 0.5908 |
0.3510 | 3060 | - | 0.5897 |
0.3522 | 3070 | - | 0.5888 |
0.3533 | 3080 | - | 0.5882 |
0.3545 | 3090 | - | 0.5874 |
0.3556 | 3100 | 1.0489 | 0.5868 |
0.3568 | 3110 | - | 0.5860 |
0.3579 | 3120 | - | 0.5854 |
0.3591 | 3130 | - | 0.5839 |
0.3602 | 3140 | - | 0.5830 |
0.3614 | 3150 | - | 0.5822 |
0.3625 | 3160 | - | 0.5814 |
0.3637 | 3170 | - | 0.5808 |
0.3648 | 3180 | - | 0.5802 |
0.3660 | 3190 | - | 0.5794 |
0.3671 | 3200 | 1.038 | 0.5788 |
0.3682 | 3210 | - | 0.5778 |
0.3694 | 3220 | - | 0.5770 |
0.3705 | 3230 | - | 0.5763 |
0.3717 | 3240 | - | 0.5752 |
0.3728 | 3250 | - | 0.5745 |
0.3740 | 3260 | - | 0.5737 |
0.3751 | 3270 | - | 0.5728 |
0.3763 | 3280 | - | 0.5720 |
0.3774 | 3290 | - | 0.5713 |
0.3786 | 3300 | 1.0058 | 0.5707 |
0.3797 | 3310 | - | 0.5700 |
0.3809 | 3320 | - | 0.5690 |
0.3820 | 3330 | - | 0.5681 |
0.3832 | 3340 | - | 0.5673 |
0.3843 | 3350 | - | 0.5669 |
0.3855 | 3360 | - | 0.5667 |
0.3866 | 3370 | - | 0.5665 |
0.3877 | 3380 | - | 0.5659 |
0.3889 | 3390 | - | 0.5650 |
0.3900 | 3400 | 1.0413 | 0.5645 |
0.3912 | 3410 | - | 0.5641 |
0.3923 | 3420 | - | 0.5635 |
0.3935 | 3430 | - | 0.5629 |
0.3946 | 3440 | - | 0.5622 |
0.3958 | 3450 | - | 0.5617 |
0.3969 | 3460 | - | 0.5614 |
0.3981 | 3470 | - | 0.5607 |
0.3992 | 3480 | - | 0.5603 |
0.4004 | 3490 | - | 0.5598 |
0.4015 | 3500 | 0.938 | 0.5596 |
0.4027 | 3510 | - | 0.5589 |
0.4038 | 3520 | - | 0.5581 |
0.4050 | 3530 | - | 0.5571 |
0.4061 | 3540 | - | 0.5563 |
0.4073 | 3550 | - | 0.5557 |
0.4084 | 3560 | - | 0.5551 |
0.4095 | 3570 | - | 0.5546 |
0.4107 | 3580 | - | 0.5541 |
0.4118 | 3590 | - | 0.5535 |
0.4130 | 3600 | 0.955 | 0.5528 |
0.4141 | 3610 | - | 0.5522 |
0.4153 | 3620 | - | 0.5516 |
0.4164 | 3630 | - | 0.5509 |
0.4176 | 3640 | - | 0.5503 |
0.4187 | 3650 | - | 0.5495 |
0.4199 | 3660 | - | 0.5490 |
0.4210 | 3670 | - | 0.5481 |
0.4222 | 3680 | - | 0.5475 |
0.4233 | 3690 | - | 0.5467 |
0.4245 | 3700 | 0.9387 | 0.5463 |
0.4256 | 3710 | - | 0.5459 |
0.4268 | 3720 | - | 0.5452 |
0.4279 | 3730 | - | 0.5448 |
0.4290 | 3740 | - | 0.5443 |
0.4302 | 3750 | - | 0.5440 |
0.4313 | 3760 | - | 0.5435 |
0.4325 | 3770 | - | 0.5430 |
0.4336 | 3780 | - | 0.5423 |
0.4348 | 3790 | - | 0.5418 |
0.4359 | 3800 | 0.9672 | 0.5415 |
0.4371 | 3810 | - | 0.5413 |
0.4382 | 3820 | - | 0.5410 |
0.4394 | 3830 | - | 0.5406 |
0.4405 | 3840 | - | 0.5403 |
0.4417 | 3850 | - | 0.5397 |
0.4428 | 3860 | - | 0.5394 |
0.4440 | 3870 | - | 0.5386 |
0.4451 | 3880 | - | 0.5378 |
0.4463 | 3890 | - | 0.5370 |
0.4474 | 3900 | 0.926 | 0.5360 |
0.4485 | 3910 | - | 0.5351 |
0.4497 | 3920 | - | 0.5346 |
0.4508 | 3930 | - | 0.5343 |
0.4520 | 3940 | - | 0.5339 |
0.4531 | 3950 | - | 0.5337 |
0.4543 | 3960 | - | 0.5334 |
0.4554 | 3970 | - | 0.5330 |
0.4566 | 3980 | - | 0.5327 |
0.4577 | 3990 | - | 0.5324 |
0.4589 | 4000 | 0.867 | 0.5319 |
0.4600 | 4010 | - | 0.5313 |
0.4612 | 4020 | - | 0.5308 |
0.4623 | 4030 | - | 0.5300 |
0.4635 | 4040 | - | 0.5293 |
0.4646 | 4050 | - | 0.5287 |
0.4658 | 4060 | - | 0.5284 |
0.4669 | 4070 | - | 0.5281 |
0.4681 | 4080 | - | 0.5277 |
0.4692 | 4090 | - | 0.5272 |
0.4703 | 4100 | 0.916 | 0.5267 |
0.4715 | 4110 | - | 0.5260 |
0.4726 | 4120 | - | 0.5252 |
0.4738 | 4130 | - | 0.5246 |
0.4749 | 4140 | - | 0.5239 |
0.4761 | 4150 | - | 0.5232 |
0.4772 | 4160 | - | 0.5225 |
0.4784 | 4170 | - | 0.5221 |
0.4795 | 4180 | - | 0.5216 |
0.4807 | 4190 | - | 0.5211 |
0.4818 | 4200 | 0.9667 | 0.5206 |
0.4830 | 4210 | - | 0.5204 |
0.4841 | 4220 | - | 0.5200 |
0.4853 | 4230 | - | 0.5192 |
0.4864 | 4240 | - | 0.5187 |
0.4876 | 4250 | - | 0.5185 |
0.4887 | 4260 | - | 0.5179 |
0.4898 | 4270 | - | 0.5173 |
0.4910 | 4280 | - | 0.5170 |
0.4921 | 4290 | - | 0.5165 |
0.4933 | 4300 | 0.9276 | 0.5160 |
0.4944 | 4310 | - | 0.5154 |
0.4956 | 4320 | - | 0.5150 |
0.4967 | 4330 | - | 0.5144 |
0.4979 | 4340 | - | 0.5141 |
0.4990 | 4350 | - | 0.5139 |
0.5002 | 4360 | - | 0.5138 |
0.5013 | 4370 | - | 0.5136 |
0.5025 | 4380 | - | 0.5133 |
0.5036 | 4390 | - | 0.5129 |
0.5048 | 4400 | 0.9331 | 0.5126 |
0.5059 | 4410 | - | 0.5123 |
0.5071 | 4420 | - | 0.5117 |
0.5082 | 4430 | - | 0.5113 |
0.5093 | 4440 | - | 0.5108 |
0.5105 | 4450 | - | 0.5106 |
0.5116 | 4460 | - | 0.5106 |
0.5128 | 4470 | - | 0.5106 |
0.5139 | 4480 | - | 0.5104 |
0.5151 | 4490 | - | 0.5102 |
0.5162 | 4500 | 0.907 | 0.5097 |
0.5174 | 4510 | - | 0.5092 |
0.5185 | 4520 | - | 0.5086 |
0.5197 | 4530 | - | 0.5082 |
0.5208 | 4540 | - | 0.5079 |
0.5220 | 4550 | - | 0.5075 |
0.5231 | 4560 | - | 0.5071 |
0.5243 | 4570 | - | 0.5067 |
0.5254 | 4580 | - | 0.5066 |
0.5266 | 4590 | - | 0.5062 |
0.5277 | 4600 | 0.913 | 0.5059 |
0.5289 | 4610 | - | 0.5056 |
0.5300 | 4620 | - | 0.5052 |
0.5311 | 4630 | - | 0.5046 |
0.5323 | 4640 | - | 0.5039 |
0.5334 | 4650 | - | 0.5033 |
0.5346 | 4660 | - | 0.5030 |
0.5357 | 4670 | - | 0.5028 |
0.5369 | 4680 | - | 0.5027 |
0.5380 | 4690 | - | 0.5023 |
0.5392 | 4700 | 0.9047 | 0.5020 |
0.5403 | 4710 | - | 0.5018 |
0.5415 | 4720 | - | 0.5015 |
0.5426 | 4730 | - | 0.5009 |
0.5438 | 4740 | - | 0.5003 |
0.5449 | 4750 | - | 0.4997 |
0.5461 | 4760 | - | 0.4991 |
0.5472 | 4770 | - | 0.4984 |
0.5484 | 4780 | - | 0.4980 |
0.5495 | 4790 | - | 0.4980 |
0.5506 | 4800 | 0.887 | 0.4979 |
0.5518 | 4810 | - | 0.4975 |
0.5529 | 4820 | - | 0.4973 |
0.5541 | 4830 | - | 0.4969 |
0.5552 | 4840 | - | 0.4966 |
0.5564 | 4850 | - | 0.4964 |
0.5575 | 4860 | - | 0.4964 |
0.5587 | 4870 | - | 0.4960 |
0.5598 | 4880 | - | 0.4957 |
0.5610 | 4890 | - | 0.4955 |
0.5621 | 4900 | 0.8645 | 0.4952 |
0.5633 | 4910 | - | 0.4950 |
0.5644 | 4920 | - | 0.4952 |
0.5656 | 4930 | - | 0.4949 |
0.5667 | 4940 | - | 0.4943 |
0.5679 | 4950 | - | 0.4938 |
0.5690 | 4960 | - | 0.4936 |
0.5702 | 4970 | - | 0.4933 |
0.5713 | 4980 | - | 0.4931 |
0.5724 | 4990 | - | 0.4929 |
0.5736 | 5000 | 0.8348 | 0.4924 |
Framework Versions
- Python: 3.12.8
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.2.0+cu121
- Accelerate: 1.4.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 66
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for sobamchan/st5-base-mean-5000
Base model
google-t5/t5-base