TracyTank's picture
End of training
c613a04 verified
---
library_name: peft
license: mit
base_model: microsoft/Phi-3-mini-128k-instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 63d6e5e1-4c1e-4c62-9155-bf548946c7e7
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: microsoft/Phi-3-mini-128k-instruct
bf16: auto
chat_template: llama3
cosine_min_lr_ratio: 0.1
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
- 356918e9e6f154d9_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/356918e9e6f154d9_train_data.json
type:
field_instruction: title
field_output: summary
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: '{'''':torch.cuda.current_device()}'
do_eval: true
early_stopping_patience: 1
eval_batch_size: 1
eval_sample_packing: false
eval_steps: 25
evaluation_strategy: steps
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 64
gradient_checkpointing: true
group_by_length: true
hub_model_id: sn56c2/63d6e5e1-4c1e-4c62-9155-bf548946c7e7
hub_repo: stevemonite
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lora_target_modules:
- q_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 70GiB
max_steps: 457
micro_batch_size: 1
mlflow_experiment_name: /tmp/356918e9e6f154d9_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
save_strategy: steps
sequence_len: 2048
strict: false
tf32: false
tokenizer_type: AutoTokenizer
torch_compile: false
train_on_inputs: false
trust_remote_code: true
val_set_size: 50
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: 63d6e5e1-4c1e-4c62-9155-bf548946c7e7
wandb_project: god
wandb_run: y030
wandb_runid: 63d6e5e1-4c1e-4c62-9155-bf548946c7e7
warmup_raio: 0.03
warmup_ratio: 0.04
weight_decay: 0.01
xformers_attention: null
```
</details><br>
# 63d6e5e1-4c1e-4c62-9155-bf548946c7e7
This model is a fine-tuned version of [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3548
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 64
- total_train_batch_size: 256
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 18
- training_steps: 457
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 100.1855 | 0.0065 | 1 | 1.6956 |
| 91.224 | 0.1619 | 25 | 1.4068 |
| 94.1133 | 0.3238 | 50 | 1.3826 |
| 93.0197 | 0.4857 | 75 | 1.3749 |
| 91.5051 | 0.6476 | 100 | 1.3694 |
| 90.4118 | 0.8096 | 125 | 1.3663 |
| 91.253 | 0.9715 | 150 | 1.3635 |
| 84.4847 | 1.1334 | 175 | 1.3622 |
| 83.43 | 1.2953 | 200 | 1.3604 |
| 86.4043 | 1.4572 | 225 | 1.3591 |
| 85.2274 | 1.6191 | 250 | 1.3582 |
| 83.7095 | 1.7810 | 275 | 1.3561 |
| 83.9212 | 1.9429 | 300 | 1.3534 |
| 86.077 | 2.1048 | 325 | 1.3548 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1