Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: HuggingFaceM4/tiny-random-LlamaForCausalLM
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - c7e84d8e5fb5d2f8_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/c7e84d8e5fb5d2f8_train_data.json
  type:
    field_input: context
    field_instruction: instruction
    field_output: response
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: sn56c2/28065349-9a47-4381-b1f0-630db778ce92
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 72GB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/c7e84d8e5fb5d2f8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: sn56c2/28065349
wandb_project: god
wandb_run: 1g24
wandb_runid: sn56c2/28065349
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

9eb5a502-c189-47f6-bec1-d3588d65e717

This model is a fine-tuned version of HuggingFaceM4/tiny-random-LlamaForCausalLM on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.3524

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • total_eval_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
No log 0.0091 1 10.3785
10.3777 0.0818 9 10.3776
10.3749 0.1636 18 10.3751
10.3726 0.2455 27 10.3706
10.3669 0.3273 36 10.3637
10.3591 0.4091 45 10.3578
10.3569 0.4909 54 10.3547
10.3551 0.5727 63 10.3534
10.3537 0.6545 72 10.3527
10.3533 0.7364 81 10.3525
10.3531 0.8182 90 10.3524
10.3537 0.9 99 10.3524

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
6
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sn56c2/28065349-9a47-4381-b1f0-630db778ce92

Adapter
(184)
this model