smutuvi's picture
End of training
ff5848f verified
|
raw
history blame
3.6 kB
metadata
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
datasets:
  - common_voice_16_0
metrics:
  - wer
model-index:
  - name: w2v-bert-2.0-swahili-colab-CV16.0_5epochs
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_16_0
          type: common_voice_16_0
          config: sw
          split: test
          args: sw
        metrics:
          - name: Wer
            type: wer
            value: 0.8218669188312941

w2v-bert-2.0-swahili-colab-CV16.0_5epochs

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the common_voice_16_0 dataset. It achieves the following results on the evaluation set:

  • Loss: inf
  • Wer: 0.8219

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.015 0.16 300 inf 0.2387
0.2497 0.33 600 inf 0.2413
0.2246 0.49 900 inf 0.2121
0.2032 0.66 1200 inf 0.2097
0.1895 0.82 1500 inf 0.1969
0.1897 0.99 1800 inf 0.2092
0.1718 1.15 2100 inf 0.1895
0.1872 1.31 2400 inf 0.1949
0.2056 1.48 2700 inf 0.1975
0.3533 1.64 3000 inf 0.4304
0.5492 1.81 3300 inf 0.2979
1.0312 1.97 3600 inf 0.5560
0.8936 2.14 3900 inf 0.8217
1.0655 2.3 4200 inf 0.8219
1.0856 2.46 4500 inf 0.8219
1.0855 2.63 4800 inf 0.8219
1.0823 2.79 5100 inf 0.8219
1.0847 2.96 5400 inf 0.8219
1.0835 3.12 5700 inf 0.8219
1.0886 3.28 6000 inf 0.8219
1.0801 3.45 6300 inf 0.8219
1.0765 3.61 6600 inf 0.8219
1.0878 3.78 6900 inf 0.8219
1.0884 3.94 7200 inf 0.8219
1.0824 4.11 7500 inf 0.8219
1.0881 4.27 7800 inf 0.8219
1.0884 4.43 8100 inf 0.8219
1.0786 4.6 8400 inf 0.8219
1.0846 4.76 8700 inf 0.8219
1.0861 4.93 9000 inf 0.8219

Framework versions

  • Transformers 4.37.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0