SentenceTransformer based on BAAI/bge-small-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-small-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("smokxy/embedding-finetuned")
# Run inference
sentences = [
"What does the term 'shareholder members' refer to?",
"'Date: To, (i) The Managing Director Small Farmers' Agri-Business Consortium (SFAC), NCUI Auditorium, August Kranti Marg, Hauz Khas, New Delhi 110016. (ii)The Managing Director National Co-operative Development Corporation (NCDC), 4, Siri Institutional Area, Hauz Khas, New Delhi 110016. (iii) The Chief General Manager National Bank for Agriculture and Rural Development (NABARD), Regional Office --------------------------------------------------------------- (iv) To any other additional Implementing Agency allowed/designated, as the case may be. Sub: Application for Equity Grant under scheme of Formation and Promotion of 10,000 Farmer Producer Organizations (FPOs) Dear Sir/Madam, We herewith apply for Equity Grant as per the provisions under the captioned scheme. 1. The details of the FPO are as under- S. No. Particulars to be furnished Details 1. Name of the FPO 2. Correspondence address of FPO 3. Contact details of FPO 4. Registration Number 5. Date of registration/incorporation of FPO 6. Brief account of business of FPO 7. Number of Shareholder Members 8. Number of Small, Marginal and Landless Shareholder Members'",
"'19.1 It has been seen, during first two years of implementation of PMFBY, there are various types of yield disputes, which unnecessarily delays the claim settlement. Following figure shows the procedures to be adopted in various cases. Figure. Procedures to be followed in different yield dispute cases 19.2 Wherever the yield estimates reported at IU level are abnormally low or high vis-à-vis the general crop condition the Insurance Company in consultation with State Govt. can make use of various products (e.g. Satellite based Vegetation Index, Weather parameters, etc.) or other technologies (including statistical test, crop models etc.) to confirm yield estimates. If Insurance Company witnesses any anomaly/deficiency in the actual yield data(partial /consolidated) received from the State Govt., the same shall be brought into the notice of concerned State department within 7 days from date of receipt of yield data with specific observations/remarks under intimation to Govt. of India and anomaly, if any, may be resolved in next 7 days by the State Level Coordination Committee (SLCC) headed by Additional Chief Secretary/Principal Secretary/Secretary of the concerned department. This committee shall be authorized to decide all such cases and the decision in such cases shall be final. The SLCC may refer the case to State Level Technical Advisory Committee (STAC) for dispute resolution (Constitution of STAC is defined in Para 19.5). In case the matter stands unresolved even after examination by STAC, it may be escalated to TAC along with all relevant documents including minutes of meetings/records of discussion and report of the STAC and SLCC. Reference to TAC can be made thereafter only in conditions specified in Para 19.7.1 However, data with anomalies which is not reported within 7 days will be treated as accepted to insurance company.'",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
val_evaluator
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.43 |
cosine_accuracy@5 | 0.87 |
cosine_accuracy@10 | 0.92 |
cosine_precision@1 | 0.43 |
cosine_precision@5 | 0.174 |
cosine_precision@10 | 0.092 |
cosine_recall@1 | 0.43 |
cosine_recall@5 | 0.87 |
cosine_recall@10 | 0.92 |
cosine_ndcg@5 | 0.6779 |
cosine_ndcg@10 | 0.6934 |
cosine_ndcg@100 | 0.7122 |
cosine_mrr@5 | 0.6127 |
cosine_mrr@10 | 0.6188 |
cosine_mrr@100 | 0.6234 |
cosine_map@100 | 0.6234 |
dot_accuracy@1 | 0.43 |
dot_accuracy@5 | 0.87 |
dot_accuracy@10 | 0.92 |
dot_precision@1 | 0.43 |
dot_precision@5 | 0.174 |
dot_precision@10 | 0.092 |
dot_recall@1 | 0.43 |
dot_recall@5 | 0.87 |
dot_recall@10 | 0.92 |
dot_ndcg@5 | 0.6779 |
dot_ndcg@10 | 0.6934 |
dot_ndcg@100 | 0.7122 |
dot_mrr@5 | 0.6127 |
dot_mrr@10 | 0.6188 |
dot_mrr@100 | 0.6234 |
dot_map@100 | 0.6234 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsgradient_accumulation_steps
: 4learning_rate
: 1e-05weight_decay
: 0.01num_train_epochs
: 1.0warmup_ratio
: 0.1load_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 4eval_accumulation_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1.0max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | val_evaluator_cosine_map@100 |
---|---|---|---|---|
0.531 | 15 | 0.511 | 0.1405 | 0.6234 |
0.9912 | 28 | - | 0.1405 | 0.6234 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.41.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.27.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
GISTEmbedLoss
@misc{solatorio2024gistembed,
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
author={Aivin V. Solatorio},
year={2024},
eprint={2402.16829},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for smokxy/embedding-finetuned
Base model
BAAI/bge-small-en-v1.5Evaluation results
- Cosine Accuracy@1 on val evaluatorself-reported0.430
- Cosine Accuracy@5 on val evaluatorself-reported0.870
- Cosine Accuracy@10 on val evaluatorself-reported0.920
- Cosine Precision@1 on val evaluatorself-reported0.430
- Cosine Precision@5 on val evaluatorself-reported0.174
- Cosine Precision@10 on val evaluatorself-reported0.092
- Cosine Recall@1 on val evaluatorself-reported0.430
- Cosine Recall@5 on val evaluatorself-reported0.870
- Cosine Recall@10 on val evaluatorself-reported0.920
- Cosine Ndcg@5 on val evaluatorself-reported0.678