smanduru commited on
Commit
82db4d8
1 Parent(s): fb33dfa

Hyper Parameter Tuning

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 258.25 +/- 17.09
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 272.15 +/- 13.38
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3962f7c310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3962f7c3a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3962f7c430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3962f7c4c0>", "_build": "<function ActorCriticPolicy._build at 0x7f3962f7c550>", "forward": "<function ActorCriticPolicy.forward at 0x7f3962f7c5e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3962f7c670>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3962f7c700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3962f7c790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3962f7c820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3962f7c8b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3962f767e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671657901567711166, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNLJ71XHAk/QtCavT4lqL7j45y9c33euwAAAAAAAAAAzUi+uzioGz9Jpiq9x1qVvk5dnTwTyRu+AAAAAAAAAABmkQa+dbKpPuKigj20OnW+oGj1vGqJmz0AAAAAAAAAAGaEND26zY0+Wip0u3tkir4Dwxm9osqBvQAAAAAAAAAARsRrvtTd9rzd0dm7yZVdO2sEXT5z19I6AACAPwAAgD8zEgS+cfeqPpuNlz1O8xW+EmZ5vILvYL0AAAAAAAAAAKbgij2S7ho+1o/hvUaPd76MBVO9u9mhPQAAAAAAAAAAM2qMPoeZaD9DvDC+RmqXvi/DHD7SBdC9AAAAAAAAAAAz1Ca9HP+QPwMs0r3LTvW+Zh29vLul67wAAAAAAAAAAKZBv702C4I/g/ixvT+c8r4OHCm8VwERvQAAAAAAAAAATXdkvUjzpboINlq7FIT8tQG2z7rtImE1AACAPwAAgD8zC+M74726P/t1gz0aWL49fhqAu33uaDwAAAAAAAAAAABOYLzX82O5nKKSutUYzjSiuxw6NU6rOQAAgD8AAIA/sxvePTEMlz6+3Gi+WWaTvvjnmjwx9kO9AAAAAAAAAACNCI69e5aXutg+bDOyBBQr90gqOoglzLMAAIA/AACAP61Ra75g+JY+3LayPp6QHb4vgME8areZPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/5JUphjQckCUhpRSlIwBbJRNCwGMAXSUR0CTWJc9nscAdX2UKGgGaAloD0MIvALRkzJib0CUhpRSlGgVTR4BaBZHQJNZrVQQ+U11fZQoaAZoCWgPQwiLijid5N9xQJSGlFKUaBVNDgFoFkdAk1nAhKUVz3V9lChoBmgJaA9DCHtq9dVVa3FAlIaUUpRoFUv5aBZHQJNabIsAeaN1fZQoaAZoCWgPQwjknq7u2D9vQJSGlFKUaBVNHwFoFkdAk1r4znA6+3V9lChoBmgJaA9DCF0yjpFsqW5AlIaUUpRoFU0gAWgWR0CTWwBBiTdMdX2UKGgGaAloD0MIdVd2weCebUCUhpRSlGgVTSgBaBZHQJNbs+t8uz11fZQoaAZoCWgPQwhBnfLohqJwQJSGlFKUaBVNFQFoFkdAk1xmZiNKiHV9lChoBmgJaA9DCOjaF9CLd25AlIaUUpRoFU0lAWgWR0CTXZC+10DEdX2UKGgGaAloD0MIBoTWw9excECUhpRSlGgVTS4BaBZHQJNdnriVB2R1fZQoaAZoCWgPQwjxgR3/hQZyQJSGlFKUaBVNMQFoFkdAk12lkMCtBHV9lChoBmgJaA9DCAq9/iS+Fm1AlIaUUpRoFU0UAWgWR0CTXbV7hNucdX2UKGgGaAloD0MIiUFg5RAFc0CUhpRSlGgVTUwBaBZHQJNeJXeWOZN1fZQoaAZoCWgPQwhZ3H9kOnxxQJSGlFKUaBVNBgFoFkdAk16MiW3Sa3V9lChoBmgJaA9DCCP3dHVHjHBAlIaUUpRoFU0iAWgWR0CTYDsXizcAdX2UKGgGaAloD0MIKChFK/eTcECUhpRSlGgVTWIBaBZHQJNjQ/3WWhR1fZQoaAZoCWgPQwhB8zl3O1ZwQJSGlFKUaBVNNgFoFkdAk2P7lzU7S3V9lChoBmgJaA9DCHhEhepm+HBAlIaUUpRoFU09AWgWR0CTZFx6OYICdX2UKGgGaAloD0MIidFzC138cECUhpRSlGgVTR4BaBZHQJNkdW3jMmp1fZQoaAZoCWgPQwh4YtaLofxvQJSGlFKUaBVNKAFoFkdAk2TivLX+VHV9lChoBmgJaA9DCNLijGGOAXFAlIaUUpRoFU0bAWgWR0CTZTRekYXPdX2UKGgGaAloD0MIea2E7pJAS0CUhpRSlGgVS81oFkdAk2VHb/Ot4nV9lChoBmgJaA9DCJOKxtrfCG5AlIaUUpRoFU17AWgWR0CTZZBYmsvJdX2UKGgGaAloD0MIaOp1i8AocECUhpRSlGgVS/poFkdAk2YRCMPz4HV9lChoBmgJaA9DCKMjufxHTXJAlIaUUpRoFU0fAWgWR0CTZgtRvWH2dX2UKGgGaAloD0MIdR2qKcmockCUhpRSlGgVTQ0BaBZHQJNmrIBBAwB1fZQoaAZoCWgPQwi7YduizF5vQJSGlFKUaBVNFwFoFkdAk2cLcwg1WXV9lChoBmgJaA9DCNGRXP6DvXFAlIaUUpRoFU0oAWgWR0CTZ19Ujs2OdX2UKGgGaAloD0MIegCL/Lo9ckCUhpRSlGgVTSwBaBZHQJNom7z06HV1fZQoaAZoCWgPQwicGJKTiTpvQJSGlFKUaBVNMAFoFkdAk2qIWYWtVHV9lChoBmgJaA9DCGTmApfH5XBAlIaUUpRoFU0WAWgWR0CTbaayKNyYdX2UKGgGaAloD0MIZTkJpS+LckCUhpRSlGgVTRoBaBZHQJNtt9RaX8h1fZQoaAZoCWgPQwg+kpIeRspzQJSGlFKUaBVNBgFoFkdAk23HC9AX23V9lChoBmgJaA9DCH9qvHQT+nFAlIaUUpRoFU01AWgWR0CTbcg0CRwIdX2UKGgGaAloD0MIJoqQup1NTkCUhpRSlGgVS99oFkdAk27ryxzJZHV9lChoBmgJaA9DCD5CzZAqtW9AlIaUUpRoFU0iAWgWR0CTbyn7pFCtdX2UKGgGaAloD0MIy/Pg7qzpbkCUhpRSlGgVTQEBaBZHQJNvRpKzzEt1fZQoaAZoCWgPQwhoA7AB0VVxQJSGlFKUaBVNIgFoFkdAk2+5t78ejnV9lChoBmgJaA9DCBYYsrqVQ3FAlIaUUpRoFU0qAWgWR0CTcALwnYxtdX2UKGgGaAloD0MIu5hmutdDcECUhpRSlGgVTUMBaBZHQJNwCneizs11fZQoaAZoCWgPQwjMJyuG62VyQJSGlFKUaBVL9GgWR0CTcRvtdAxBdX2UKGgGaAloD0MIyatzDAgFcECUhpRSlGgVTXYBaBZHQJNxYr9VFQV1fZQoaAZoCWgPQwgo9PqT+H1sQJSGlFKUaBVNVwFoFkdAk3J/QBxPwnV9lChoBmgJaA9DCNGy7h9LjHBAlIaUUpRoFU08AWgWR0CTdfAZsKsudX2UKGgGaAloD0MIDycwndZkbECUhpRSlGgVTQ0BaBZHQJN3z3Hq/ud1fZQoaAZoCWgPQwglBKvqpYVxQJSGlFKUaBVNFQFoFkdAk3gdW2gFo3V9lChoBmgJaA9DCAN3oE65ZHJAlIaUUpRoFUvsaBZHQJN4Qrxy4nZ1fZQoaAZoCWgPQwhYN94d2YRxQJSGlFKUaBVNIAFoFkdAk3jBWo3rEHV9lChoBmgJaA9DCF3dsdgmVXJAlIaUUpRoFU0ZAWgWR0CTedLgGbCrdX2UKGgGaAloD0MIHy+kw4PHcECUhpRSlGgVTQcBaBZHQJN6AKneizt1fZQoaAZoCWgPQwi9VGzMq/txQJSGlFKUaBVNTAFoFkdAk3qZhKDkEXV9lChoBmgJaA9DCFr0TgUcZXFAlIaUUpRoFU0fAWgWR0CTjyMsYl6adX2UKGgGaAloD0MInDV4XxUyc0CUhpRSlGgVTQYBaBZHQJOProSteUp1fZQoaAZoCWgPQwj5S4v6pOtwQJSGlFKUaBVNPgFoFkdAk5ArtiQT23V9lChoBmgJaA9DCGJodXKGcXBAlIaUUpRoFU0nAWgWR0CTkInTRYzSdX2UKGgGaAloD0MIxLXaw97tcUCUhpRSlGgVTQ0BaBZHQJORNBZ6lch1fZQoaAZoCWgPQwih2XVvRZFSQJSGlFKUaBVN6ANoFkdAk5F6ZML4OHV9lChoBmgJaA9DCH6nyYy3QXBAlIaUUpRoFU0XAWgWR0CTlHUEgW8AdX2UKGgGaAloD0MIpn9JKtMEbUCUhpRSlGgVTfsBaBZHQJOV1hTfixV1fZQoaAZoCWgPQwhRLSKKCXFxQJSGlFKUaBVNJAFoFkdAk5ZdSIgvDnV9lChoBmgJaA9DCOIhjJ9GSW1AlIaUUpRoFU05AWgWR0CTl2tvXK8tdX2UKGgGaAloD0MI3UJXItAXbECUhpRSlGgVTSABaBZHQJOYFhx5s0p1fZQoaAZoCWgPQwg9RnnmJYVxQJSGlFKUaBVNEgFoFkdAk5gmBBiTdXV9lChoBmgJaA9DCDi7tUyGxXBAlIaUUpRoFU1KAWgWR0CTmX/mT1TSdX2UKGgGaAloD0MItOVciitcbUCUhpRSlGgVTSwBaBZHQJOZvl5nlGR1fZQoaAZoCWgPQwiAuKtXEWdyQJSGlFKUaBVNfwFoFkdAk5pwy2x6fXV9lChoBmgJaA9DCDp15bN8LHFAlIaUUpRoFU0nAWgWR0CTmpiz9jwydX2UKGgGaAloD0MIKSDtfwBCckCUhpRSlGgVTT8BaBZHQJOa6x4Y77t1fZQoaAZoCWgPQwgWw9UBkBNjQJSGlFKUaBVN6ANoFkdAk5vIx1xKhHV9lChoBmgJaA9DCG9kHvkDHXJAlIaUUpRoFU3eAWgWR0CTnXNzbN8mdX2UKGgGaAloD0MIjuvf9RkRcECUhpRSlGgVTVwBaBZHQJOdg9fTkQx1fZQoaAZoCWgPQwjuXYO+NBxwQJSGlFKUaBVNeQFoFkdAk57HJkoWpXV9lChoBmgJaA9DCPfN/dVjzXBAlIaUUpRoFU0gAWgWR0CTntqqfe1sdX2UKGgGaAloD0MIhj3t8Nf9b0CUhpRSlGgVTSYBaBZHQJOgxiUgSvl1fZQoaAZoCWgPQwiSJAhXgCxwQJSGlFKUaBVNGQFoFkdAk6FIF3Y+S3V9lChoBmgJaA9DCBsPttjt6WtAlIaUUpRoFU0CAWgWR0CTomfT1CgLdX2UKGgGaAloD0MIcR3jios8cECUhpRSlGgVS/5oFkdAk6KHVCojwHV9lChoBmgJaA9DCCsU6X7OXnBAlIaUUpRoFU0/AWgWR0CToy4O+ZgHdX2UKGgGaAloD0MIcF8Hzhn0ckCUhpRSlGgVTUcBaBZHQJOjiYkVvdd1fZQoaAZoCWgPQwjABkSIqxRwQJSGlFKUaBVNiwFoFkdAk6PFnZkCm3V9lChoBmgJaA9DCB767laWJ3JAlIaUUpRoFU0ZAWgWR0CTpCLXcxj8dX2UKGgGaAloD0MI8+hGWBTKcECUhpRSlGgVTSABaBZHQJOkdwsGxD91fZQoaAZoCWgPQwhLPQtC+RVxQJSGlFKUaBVNMgFoFkdAk6VPCIk7fnV9lChoBmgJaA9DCKUyxRyEB25AlIaUUpRoFU0NAWgWR0CTpm/vOQhfdX2UKGgGaAloD0MIcOmY88y5ckCUhpRSlGgVS+1oFkdAk6a3EIgNgHV9lChoBmgJaA9DCOQwmL9CrW9AlIaUUpRoFU02AWgWR0CTp8drO7g9dX2UKGgGaAloD0MIxTwraQWfcECUhpRSlGgVTXYBaBZHQJOoWE/Spit1fZQoaAZoCWgPQwig/rPmx9lsQJSGlFKUaBVNLgFoFkdAk6jMWfseGXV9lChoBmgJaA9DCDj1geQdU3FAlIaUUpRoFU0XAWgWR0CTq/WCmMwUdX2UKGgGaAloD0MIqUpbXKPVckCUhpRSlGgVTUQBaBZHQJOsU7CBPKx1fZQoaAZoCWgPQwjIQnQInH9uQJSGlFKUaBVNPQFoFkdAk61bDMvAXXV9lChoBmgJaA9DCIm1+BSA0W9AlIaUUpRoFU0aAWgWR0CTrYifQKKHdX2UKGgGaAloD0MIzGJi8zHFckCUhpRSlGgVTRQBaBZHQJOtwlyBCld1fZQoaAZoCWgPQwi/nq9ZrhtvQJSGlFKUaBVNNAFoFkdAk63iDEm6XnV9lChoBmgJaA9DCBk3NdB87HFAlIaUUpRoFU0vAWgWR0CTrg1CPZIydX2UKGgGaAloD0MILGNDN3sJcUCUhpRSlGgVTSYBaBZHQJOuvYcvM8p1fZQoaAZoCWgPQwhUUiegiRhLQJSGlFKUaBVL4WgWR0CTrsweeWfLdX2UKGgGaAloD0MI9pmzPmWPcUCUhpRSlGgVTUIBaBZHQJOwjrKNhmZ1fZQoaAZoCWgPQwjXhopxfnZyQJSGlFKUaBVNBgFoFkdAk7EEF0PpZHV9lChoBmgJaA9DCEaXN4erxXFAlIaUUpRoFU1EAWgWR0CTsb55JK8MdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3962f7c310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3962f7c3a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3962f7c430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3962f7c4c0>", "_build": "<function ActorCriticPolicy._build at 0x7f3962f7c550>", "forward": "<function ActorCriticPolicy.forward at 0x7f3962f7c5e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3962f7c670>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3962f7c700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3962f7c790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3962f7c820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3962f7c8b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3962f767e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671659782991221979, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALpAAb5PZU09dKk6PkLOl76z/pS9R1KdPQAAAAAAAAAAgDiJvY+idrqQHqO6Dy2XtecqKrspzr45AAAAAAAAgD8dmJ++jhn4PgT9Qz2KHAy/2eQ9vtH7tD0AAAAAAAAAAJpLbjwBxua8In5IvQ9YIL51upS7s5efOwAAgD8AAIA/7SF7PpruIr0HyKE7uXA5ujFdjr7sgwW7AACAPwAAgD8GKC8+vmeRP06Diz670Pe+2YtjPiCCzjoAAAAAAAAAAIB6r76CmL298qODPN9JTbv6y+I+09TWPAAAgD8AAAAAZk5EvJSDrTsmHUa+gEJvvsmZ773AiTE/AACAPwAAAAAVdoa+XEeUPmdcrD5Kcbe+gJyZvf76Az4AAAAAAAAAAD0xV77fBlU/KnWYvnloIb+4Xre+af6NvQAAAAAAAAAAM+SlPYLEmz7zvuu9mRbvvsdf6zyK2N29AAAAAAAAAACaibs6w21YulCD3Ts7r6s5Ay6Fu/QBpzgAAIA/AACAP/sbjb5Zr8U+E+NAPq3A+77VDJW+k2SfPQAAAAAAAAAAs2h2PfG8pj/K3GQ+ESMCv1HUvT3yVi4+AAAAAAAAAABzzgw+IyYYPY1YIb6RlJu+oLCbPJ6/ObwAAAAAAAAAADPMn7wffYm5QFLxOSD0jzavGTO6qoYNuQAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJzPeVnoFT0CUhpRSlIwBbJRLmowBdJRHQKwdDuejEeh1fZQoaAZoCWgPQwjC+6pc6DdxQJSGlFKUaBVL6GgWR0CsHSdq1w5vdX2UKGgGaAloD0MIpZ9wdus+b0CUhpRSlGgVS+9oFkdArB1yQo1DSnV9lChoBmgJaA9DCClbJO2G6HJAlIaUUpRoFUv5aBZHQKwddvnbItF1fZQoaAZoCWgPQwgFiljEcJZzQJSGlFKUaBVL+2gWR0CsHZ0RODaodX2UKGgGaAloD0MIwXKEDOThSECUhpRSlGgVS7BoFkdArB3IYFaB7XV9lChoBmgJaA9DCAtBDkqY6UlAlIaUUpRoFUuHaBZHQKwd3XBguyx1fZQoaAZoCWgPQwgjn1c8df9tQJSGlFKUaBVLz2gWR0CsHfrux8lYdX2UKGgGaAloD0MIEvjDzz8RckCUhpRSlGgVS/NoFkdArB4tqWTouHV9lChoBmgJaA9DCDW214JeknJAlIaUUpRoFUvqaBZHQKwfNtu1ndx1fZQoaAZoCWgPQwgw8UdRZ8hTQJSGlFKUaBVN6ANoFkdArB9LZFocrHV9lChoBmgJaA9DCDW0AdhABHNAlIaUUpRoFUvsaBZHQKwfY5dWyTp1fZQoaAZoCWgPQwiif4KLVRVxQJSGlFKUaBVLw2gWR0CsH70ADJU6dX2UKGgGaAloD0MIw9Zs5eVjcECUhpRSlGgVS9BoFkdArB//oPkJbHV9lChoBmgJaA9DCOsbmNwoeXJAlIaUUpRoFUvVaBZHQKwgKDdxhlV1fZQoaAZoCWgPQwi3lzRGq1NxQJSGlFKUaBVL62gWR0CsIDkBKcurdX2UKGgGaAloD0MIyQVn8LdNcUCUhpRSlGgVS9loFkdArCCGfPHDJnV9lChoBmgJaA9DCMVZETVRU29AlIaUUpRoFUvVaBZHQKwgnMEA5rB1fZQoaAZoCWgPQwjS5c3hGpVwQJSGlFKUaBVLy2gWR0CsIKcRcu8LdX2UKGgGaAloD0MI2h1SDBDKcECUhpRSlGgVS/BoFkdArCDSgkC3gHV9lChoBmgJaA9DCNpyLsUVB3JAlIaUUpRoFUvXaBZHQKwg4paRp111fZQoaAZoCWgPQwiKWMSww/xkQJSGlFKUaBVN6ANoFkdArCELrgOz6nV9lChoBmgJaA9DCGfUfJU8tXBAlIaUUpRoFUveaBZHQKwhGLYwqRV1fZQoaAZoCWgPQwiRmnYxjftyQJSGlFKUaBVL7mgWR0CsIXAw482adX2UKGgGaAloD0MIt3u5T063cUCUhpRSlGgVTaUBaBZHQKwitCE6DGt1fZQoaAZoCWgPQwiKsOHpVWhxQJSGlFKUaBVL7WgWR0CsIwHPmgandX2UKGgGaAloD0MICFqBIauPcUCUhpRSlGgVS95oFkdArCNBGDtgKHV9lChoBmgJaA9DCPQz9bpFrnFAlIaUUpRoFUvNaBZHQKwjZms/6ft1fZQoaAZoCWgPQwj3ItqOqY1PQJSGlFKUaBVLv2gWR0CsI52DHwPRdX2UKGgGaAloD0MI2gBsQISpc0CUhpRSlGgVS9VoFkdArCPl+d9Uj3V9lChoBmgJaA9DCADGM2hoDHJAlIaUUpRoFUv1aBZHQKwkO32mHgx1fZQoaAZoCWgPQwhvL2mMlldyQJSGlFKUaBVNAAFoFkdArCRjtZ3cHnV9lChoBmgJaA9DCJ28yAQ8V3JAlIaUUpRoFUvcaBZHQKwkaTufEn91fZQoaAZoCWgPQwhNZVHYBalwQJSGlFKUaBVL7GgWR0CsJJ2Ifr8jdX2UKGgGaAloD0MIeO+oMSHAc0CUhpRSlGgVTW0BaBZHQKwkpzT4L1F1fZQoaAZoCWgPQwjajNMQ1TxuQJSGlFKUaBVLx2gWR0CsJgnt4RmLdX2UKGgGaAloD0MIxuHMr+b6b0CUhpRSlGgVS+RoFkdArCbkf1YhdXV9lChoBmgJaA9DCJQxPszec3JAlIaUUpRoFUvBaBZHQKwm5Lg4wRJ1fZQoaAZoCWgPQwgaFTjZBmBtQJSGlFKUaBVL02gWR0CsJv86vJRwdX2UKGgGaAloD0MI6ui4GtkdcUCUhpRSlGgVS95oFkdArCcKkIomX3V9lChoBmgJaA9DCLLxYIvdH3JAlIaUUpRoFU1sAWgWR0CsJ2aGHpKSdX2UKGgGaAloD0MIhgDg2LO2b0CUhpRSlGgVS99oFkdArCe75O8CgnV9lChoBmgJaA9DCIaPiCmRPnFAlIaUUpRoFUvGaBZHQKwnxy925hB1fZQoaAZoCWgPQwiFs1vL5LhtQJSGlFKUaBVLy2gWR0CsKB+rMkhSdX2UKGgGaAloD0MIO/vKg3Twb0CUhpRSlGgVS9loFkdArChScAimmHV9lChoBmgJaA9DCFKAKJgx1W9AlIaUUpRoFUvzaBZHQKwoY3Ytg8d1fZQoaAZoCWgPQwj8AQ8MoFBxQJSGlFKUaBVL6WgWR0CsKGKv/zasdX2UKGgGaAloD0MIxCPx8rTkcUCUhpRSlGgVTVYCaBZHQKwoiWGATZh1fZQoaAZoCWgPQwjIlA9BFftzQJSGlFKUaBVNRwJoFkdArClNy/9Hc3V9lChoBmgJaA9DCM7Cnnb4+G9AlIaUUpRoFUvLaBZHQKwpYEEC/491fZQoaAZoCWgPQwjtm/urx09EQJSGlFKUaBVLqWgWR0CsKkx2bG3ndX2UKGgGaAloD0MIK/uuCD7jckCUhpRSlGgVS/doFkdArCrKQLeANHV9lChoBmgJaA9DCIEgQIYOv3BAlIaUUpRoFUvyaBZHQKwq175VOsV1fZQoaAZoCWgPQwgddAmHnoxyQJSGlFKUaBVL4GgWR0CsKt/WDpTudX2UKGgGaAloD0MIFytqMA1pbkCUhpRSlGgVS9NoFkdArCr6iqQzUXV9lChoBmgJaA9DCEYnS6034nJAlIaUUpRoFU0IAWgWR0CsKxSUkfLcdX2UKGgGaAloD0MIlQ1rKouUSkCUhpRSlGgVS7loFkdArCshWFN+LHV9lChoBmgJaA9DCP/qcd/qW3FAlIaUUpRoFU0HAWgWR0CsKydBKL88dX2UKGgGaAloD0MIKelhaHXZcUCUhpRSlGgVTesCaBZHQKwrmaH9FWp1fZQoaAZoCWgPQwgpIsMq3slyQJSGlFKUaBVL2mgWR0CsK6hzFMqSdX2UKGgGaAloD0MIDtdqD7t1cECUhpRSlGgVS9FoFkdArCurnkkrw3V9lChoBmgJaA9DCJrPudu1nHFAlIaUUpRoFUvmaBZHQKwrzaYeDFt1fZQoaAZoCWgPQwg3x7lNOFRxQJSGlFKUaBVL0mgWR0CsLHMOwxFidX2UKGgGaAloD0MIhnMNM3QDcUCUhpRSlGgVTQgBaBZHQKwtMfT1CgN1fZQoaAZoCWgPQwgxCRfyCBRSQJSGlFKUaBVLoWgWR0CsLWy8BdUsdX2UKGgGaAloD0MI+tUcIBi1cUCUhpRSlGgVS8ZoFkdArC20s189fXV9lChoBmgJaA9DCO6UDtZ/h25AlIaUUpRoFUvEaBZHQKwt2dK/VRV1fZQoaAZoCWgPQwjrOel9oytxQJSGlFKUaBVLy2gWR0CsLd3jENvwdX2UKGgGaAloD0MIQ8u6fyzMQECUhpRSlGgVS6NoFkdArC4OlANXo3V9lChoBmgJaA9DCELPZtXnE3FAlIaUUpRoFUvfaBZHQKwuYZXMhX91fZQoaAZoCWgPQwivesA8JKBwQJSGlFKUaBVL2mgWR0CsLl9zOopAdX2UKGgGaAloD0MI43DmV3OpY0CUhpRSlGgVTegDaBZHQKwutrOZ9eB1fZQoaAZoCWgPQwhMjjulg9FyQJSGlFKUaBVNBAFoFkdArC68qMFUynV9lChoBmgJaA9DCDkqN1HLj25AlIaUUpRoFUvcaBZHQKwu7/9YOlR1fZQoaAZoCWgPQwiWl/xPfrBvQJSGlFKUaBVL82gWR0CsLzDDKoycdX2UKGgGaAloD0MIDw2LUReGcECUhpRSlGgVS+ZoFkdArC844MnZ03V9lChoBmgJaA9DCN46/3aZanNAlIaUUpRoFUvkaBZHQKwv5FLnLaF1fZQoaAZoCWgPQwg0L4fd9zpyQJSGlFKUaBVNDgJoFkdArC/suOCGvnV9lChoBmgJaA9DCEYL0LZa3nBAlIaUUpRoFUvSaBZHQKwwrpjc2zh1fZQoaAZoCWgPQwjZtb3dUlVxQJSGlFKUaBVL8mgWR0CsMLVoxpL3dX2UKGgGaAloD0MIwQDCh9J0cUCUhpRSlGgVS9hoFkdArDDgpKBd2XV9lChoBmgJaA9DCNYdi22SWXNAlIaUUpRoFUv1aBZHQKww6u6ErXl1fZQoaAZoCWgPQwhywK4mjyJyQJSGlFKUaBVL5GgWR0CsMTUnw5NodX2UKGgGaAloD0MInRA66FKwcECUhpRSlGgVS+loFkdArDGN8Rcu8XV9lChoBmgJaA9DCAMlBRaA23FAlIaUUpRoFUvfaBZHQKwx9t6X0Gx1fZQoaAZoCWgPQwjgSnZshA5zQJSGlFKUaBVL92gWR0CsMhSvTw2EdX2UKGgGaAloD0MIOQzmr1ANcUCUhpRSlGgVS/doFkdArDIZ3FDOT3V9lChoBmgJaA9DCJ4GDJI+fnFAlIaUUpRoFUvYaBZHQKwyKhoM8YB1fZQoaAZoCWgPQwjHLHsS2M5NQJSGlFKUaBVLp2gWR0CsMjE12q1gdX2UKGgGaAloD0MI31FjQgywc0CUhpRSlGgVTQkBaBZHQKwzloGIKtx1fZQoaAZoCWgPQwimXyLeunBzQJSGlFKUaBVLu2gWR0CsM5vCVKPGdX2UKGgGaAloD0MIVg+Yh0wnRUCUhpRSlGgVS5hoFkdArDPIfW+XaHV9lChoBmgJaA9DCGCuRQsQQHFAlIaUUpRoFU2uAWgWR0CsM/3IEKVqdX2UKGgGaAloD0MIlgoqqn5McUCUhpRSlGgVS+toFkdArDQRMN+b3HV9lChoBmgJaA9DCFIq4Qk9xnFAlIaUUpRoFUvMaBZHQKw0LSvTw2F1fZQoaAZoCWgPQwi1/SsrzQJyQJSGlFKUaBVNrwFoFkdArDRtVrAP/nV9lChoBmgJaA9DCMK+nUSEO0tAlIaUUpRoFUuxaBZHQKw0sOG0u151fZQoaAZoCWgPQwi3Qe23NltxQJSGlFKUaBVL3GgWR0CsNT2aUiY+dX2UKGgGaAloD0MI5Lz/j5ORckCUhpRSlGgVS+BoFkdArDVIqXnhbXV9lChoBmgJaA9DCC6Oyk0U/XBAlIaUUpRoFUvqaBZHQKw1kmzjWCp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-sman.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9a5b350711ac6ac12069f3c9311875553eeed2d71e5cadb814d5ca6493540233
3
- size 147206
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11abf93e8be700cc0661c5ede3bd32d099dcad554834639b012d7b61c727d2a1
3
+ size 147111
ppo-LunarLander-sman/data CHANGED
@@ -47,7 +47,7 @@
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1671657901567711166,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
@@ -56,7 +56,7 @@
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNLJ71XHAk/QtCavT4lqL7j45y9c33euwAAAAAAAAAAzUi+uzioGz9Jpiq9x1qVvk5dnTwTyRu+AAAAAAAAAABmkQa+dbKpPuKigj20OnW+oGj1vGqJmz0AAAAAAAAAAGaEND26zY0+Wip0u3tkir4Dwxm9osqBvQAAAAAAAAAARsRrvtTd9rzd0dm7yZVdO2sEXT5z19I6AACAPwAAgD8zEgS+cfeqPpuNlz1O8xW+EmZ5vILvYL0AAAAAAAAAAKbgij2S7ho+1o/hvUaPd76MBVO9u9mhPQAAAAAAAAAAM2qMPoeZaD9DvDC+RmqXvi/DHD7SBdC9AAAAAAAAAAAz1Ca9HP+QPwMs0r3LTvW+Zh29vLul67wAAAAAAAAAAKZBv702C4I/g/ixvT+c8r4OHCm8VwERvQAAAAAAAAAATXdkvUjzpboINlq7FIT8tQG2z7rtImE1AACAPwAAgD8zC+M74726P/t1gz0aWL49fhqAu33uaDwAAAAAAAAAAABOYLzX82O5nKKSutUYzjSiuxw6NU6rOQAAgD8AAIA/sxvePTEMlz6+3Gi+WWaTvvjnmjwx9kO9AAAAAAAAAACNCI69e5aXutg+bDOyBBQr90gqOoglzLMAAIA/AACAP61Ra75g+JY+3LayPp6QHb4vgME8areZPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
@@ -69,21 +69,21 @@
69
  "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/5JUphjQckCUhpRSlIwBbJRNCwGMAXSUR0CTWJc9nscAdX2UKGgGaAloD0MIvALRkzJib0CUhpRSlGgVTR4BaBZHQJNZrVQQ+U11fZQoaAZoCWgPQwiLijid5N9xQJSGlFKUaBVNDgFoFkdAk1nAhKUVz3V9lChoBmgJaA9DCHtq9dVVa3FAlIaUUpRoFUv5aBZHQJNabIsAeaN1fZQoaAZoCWgPQwjknq7u2D9vQJSGlFKUaBVNHwFoFkdAk1r4znA6+3V9lChoBmgJaA9DCF0yjpFsqW5AlIaUUpRoFU0gAWgWR0CTWwBBiTdMdX2UKGgGaAloD0MIdVd2weCebUCUhpRSlGgVTSgBaBZHQJNbs+t8uz11fZQoaAZoCWgPQwhBnfLohqJwQJSGlFKUaBVNFQFoFkdAk1xmZiNKiHV9lChoBmgJaA9DCOjaF9CLd25AlIaUUpRoFU0lAWgWR0CTXZC+10DEdX2UKGgGaAloD0MIBoTWw9excECUhpRSlGgVTS4BaBZHQJNdnriVB2R1fZQoaAZoCWgPQwjxgR3/hQZyQJSGlFKUaBVNMQFoFkdAk12lkMCtBHV9lChoBmgJaA9DCAq9/iS+Fm1AlIaUUpRoFU0UAWgWR0CTXbV7hNucdX2UKGgGaAloD0MIiUFg5RAFc0CUhpRSlGgVTUwBaBZHQJNeJXeWOZN1fZQoaAZoCWgPQwhZ3H9kOnxxQJSGlFKUaBVNBgFoFkdAk16MiW3Sa3V9lChoBmgJaA9DCCP3dHVHjHBAlIaUUpRoFU0iAWgWR0CTYDsXizcAdX2UKGgGaAloD0MIKChFK/eTcECUhpRSlGgVTWIBaBZHQJNjQ/3WWhR1fZQoaAZoCWgPQwhB8zl3O1ZwQJSGlFKUaBVNNgFoFkdAk2P7lzU7S3V9lChoBmgJaA9DCHhEhepm+HBAlIaUUpRoFU09AWgWR0CTZFx6OYICdX2UKGgGaAloD0MIidFzC138cECUhpRSlGgVTR4BaBZHQJNkdW3jMmp1fZQoaAZoCWgPQwh4YtaLofxvQJSGlFKUaBVNKAFoFkdAk2TivLX+VHV9lChoBmgJaA9DCNLijGGOAXFAlIaUUpRoFU0bAWgWR0CTZTRekYXPdX2UKGgGaAloD0MIea2E7pJAS0CUhpRSlGgVS81oFkdAk2VHb/Ot4nV9lChoBmgJaA9DCJOKxtrfCG5AlIaUUpRoFU17AWgWR0CTZZBYmsvJdX2UKGgGaAloD0MIaOp1i8AocECUhpRSlGgVS/poFkdAk2YRCMPz4HV9lChoBmgJaA9DCKMjufxHTXJAlIaUUpRoFU0fAWgWR0CTZgtRvWH2dX2UKGgGaAloD0MIdR2qKcmockCUhpRSlGgVTQ0BaBZHQJNmrIBBAwB1fZQoaAZoCWgPQwi7YduizF5vQJSGlFKUaBVNFwFoFkdAk2cLcwg1WXV9lChoBmgJaA9DCNGRXP6DvXFAlIaUUpRoFU0oAWgWR0CTZ19Ujs2OdX2UKGgGaAloD0MIegCL/Lo9ckCUhpRSlGgVTSwBaBZHQJNom7z06HV1fZQoaAZoCWgPQwicGJKTiTpvQJSGlFKUaBVNMAFoFkdAk2qIWYWtVHV9lChoBmgJaA9DCGTmApfH5XBAlIaUUpRoFU0WAWgWR0CTbaayKNyYdX2UKGgGaAloD0MIZTkJpS+LckCUhpRSlGgVTRoBaBZHQJNtt9RaX8h1fZQoaAZoCWgPQwg+kpIeRspzQJSGlFKUaBVNBgFoFkdAk23HC9AX23V9lChoBmgJaA9DCH9qvHQT+nFAlIaUUpRoFU01AWgWR0CTbcg0CRwIdX2UKGgGaAloD0MIJoqQup1NTkCUhpRSlGgVS99oFkdAk27ryxzJZHV9lChoBmgJaA9DCD5CzZAqtW9AlIaUUpRoFU0iAWgWR0CTbyn7pFCtdX2UKGgGaAloD0MIy/Pg7qzpbkCUhpRSlGgVTQEBaBZHQJNvRpKzzEt1fZQoaAZoCWgPQwhoA7AB0VVxQJSGlFKUaBVNIgFoFkdAk2+5t78ejnV9lChoBmgJaA9DCBYYsrqVQ3FAlIaUUpRoFU0qAWgWR0CTcALwnYxtdX2UKGgGaAloD0MIu5hmutdDcECUhpRSlGgVTUMBaBZHQJNwCneizs11fZQoaAZoCWgPQwjMJyuG62VyQJSGlFKUaBVL9GgWR0CTcRvtdAxBdX2UKGgGaAloD0MIyatzDAgFcECUhpRSlGgVTXYBaBZHQJNxYr9VFQV1fZQoaAZoCWgPQwgo9PqT+H1sQJSGlFKUaBVNVwFoFkdAk3J/QBxPwnV9lChoBmgJaA9DCNGy7h9LjHBAlIaUUpRoFU08AWgWR0CTdfAZsKsudX2UKGgGaAloD0MIDycwndZkbECUhpRSlGgVTQ0BaBZHQJN3z3Hq/ud1fZQoaAZoCWgPQwglBKvqpYVxQJSGlFKUaBVNFQFoFkdAk3gdW2gFo3V9lChoBmgJaA9DCAN3oE65ZHJAlIaUUpRoFUvsaBZHQJN4Qrxy4nZ1fZQoaAZoCWgPQwhYN94d2YRxQJSGlFKUaBVNIAFoFkdAk3jBWo3rEHV9lChoBmgJaA9DCF3dsdgmVXJAlIaUUpRoFU0ZAWgWR0CTedLgGbCrdX2UKGgGaAloD0MIHy+kw4PHcECUhpRSlGgVTQcBaBZHQJN6AKneizt1fZQoaAZoCWgPQwi9VGzMq/txQJSGlFKUaBVNTAFoFkdAk3qZhKDkEXV9lChoBmgJaA9DCFr0TgUcZXFAlIaUUpRoFU0fAWgWR0CTjyMsYl6adX2UKGgGaAloD0MInDV4XxUyc0CUhpRSlGgVTQYBaBZHQJOProSteUp1fZQoaAZoCWgPQwj5S4v6pOtwQJSGlFKUaBVNPgFoFkdAk5ArtiQT23V9lChoBmgJaA9DCGJodXKGcXBAlIaUUpRoFU0nAWgWR0CTkInTRYzSdX2UKGgGaAloD0MIxLXaw97tcUCUhpRSlGgVTQ0BaBZHQJORNBZ6lch1fZQoaAZoCWgPQwih2XVvRZFSQJSGlFKUaBVN6ANoFkdAk5F6ZML4OHV9lChoBmgJaA9DCH6nyYy3QXBAlIaUUpRoFU0XAWgWR0CTlHUEgW8AdX2UKGgGaAloD0MIpn9JKtMEbUCUhpRSlGgVTfsBaBZHQJOV1hTfixV1fZQoaAZoCWgPQwhRLSKKCXFxQJSGlFKUaBVNJAFoFkdAk5ZdSIgvDnV9lChoBmgJaA9DCOIhjJ9GSW1AlIaUUpRoFU05AWgWR0CTl2tvXK8tdX2UKGgGaAloD0MI3UJXItAXbECUhpRSlGgVTSABaBZHQJOYFhx5s0p1fZQoaAZoCWgPQwg9RnnmJYVxQJSGlFKUaBVNEgFoFkdAk5gmBBiTdXV9lChoBmgJaA9DCDi7tUyGxXBAlIaUUpRoFU1KAWgWR0CTmX/mT1TSdX2UKGgGaAloD0MItOVciitcbUCUhpRSlGgVTSwBaBZHQJOZvl5nlGR1fZQoaAZoCWgPQwiAuKtXEWdyQJSGlFKUaBVNfwFoFkdAk5pwy2x6fXV9lChoBmgJaA9DCDp15bN8LHFAlIaUUpRoFU0nAWgWR0CTmpiz9jwydX2UKGgGaAloD0MIKSDtfwBCckCUhpRSlGgVTT8BaBZHQJOa6x4Y77t1fZQoaAZoCWgPQwgWw9UBkBNjQJSGlFKUaBVN6ANoFkdAk5vIx1xKhHV9lChoBmgJaA9DCG9kHvkDHXJAlIaUUpRoFU3eAWgWR0CTnXNzbN8mdX2UKGgGaAloD0MIjuvf9RkRcECUhpRSlGgVTVwBaBZHQJOdg9fTkQx1fZQoaAZoCWgPQwjuXYO+NBxwQJSGlFKUaBVNeQFoFkdAk57HJkoWpXV9lChoBmgJaA9DCPfN/dVjzXBAlIaUUpRoFU0gAWgWR0CTntqqfe1sdX2UKGgGaAloD0MIhj3t8Nf9b0CUhpRSlGgVTSYBaBZHQJOgxiUgSvl1fZQoaAZoCWgPQwiSJAhXgCxwQJSGlFKUaBVNGQFoFkdAk6FIF3Y+S3V9lChoBmgJaA9DCBsPttjt6WtAlIaUUpRoFU0CAWgWR0CTomfT1CgLdX2UKGgGaAloD0MIcR3jios8cECUhpRSlGgVS/5oFkdAk6KHVCojwHV9lChoBmgJaA9DCCsU6X7OXnBAlIaUUpRoFU0/AWgWR0CToy4O+ZgHdX2UKGgGaAloD0MIcF8Hzhn0ckCUhpRSlGgVTUcBaBZHQJOjiYkVvdd1fZQoaAZoCWgPQwjABkSIqxRwQJSGlFKUaBVNiwFoFkdAk6PFnZkCm3V9lChoBmgJaA9DCB767laWJ3JAlIaUUpRoFU0ZAWgWR0CTpCLXcxj8dX2UKGgGaAloD0MI8+hGWBTKcECUhpRSlGgVTSABaBZHQJOkdwsGxD91fZQoaAZoCWgPQwhLPQtC+RVxQJSGlFKUaBVNMgFoFkdAk6VPCIk7fnV9lChoBmgJaA9DCKUyxRyEB25AlIaUUpRoFU0NAWgWR0CTpm/vOQhfdX2UKGgGaAloD0MIcOmY88y5ckCUhpRSlGgVS+1oFkdAk6a3EIgNgHV9lChoBmgJaA9DCOQwmL9CrW9AlIaUUpRoFU02AWgWR0CTp8drO7g9dX2UKGgGaAloD0MIxTwraQWfcECUhpRSlGgVTXYBaBZHQJOoWE/Spit1fZQoaAZoCWgPQwig/rPmx9lsQJSGlFKUaBVNLgFoFkdAk6jMWfseGXV9lChoBmgJaA9DCDj1geQdU3FAlIaUUpRoFU0XAWgWR0CTq/WCmMwUdX2UKGgGaAloD0MIqUpbXKPVckCUhpRSlGgVTUQBaBZHQJOsU7CBPKx1fZQoaAZoCWgPQwjIQnQInH9uQJSGlFKUaBVNPQFoFkdAk61bDMvAXXV9lChoBmgJaA9DCIm1+BSA0W9AlIaUUpRoFU0aAWgWR0CTrYifQKKHdX2UKGgGaAloD0MIzGJi8zHFckCUhpRSlGgVTRQBaBZHQJOtwlyBCld1fZQoaAZoCWgPQwi/nq9ZrhtvQJSGlFKUaBVNNAFoFkdAk63iDEm6XnV9lChoBmgJaA9DCBk3NdB87HFAlIaUUpRoFU0vAWgWR0CTrg1CPZIydX2UKGgGaAloD0MILGNDN3sJcUCUhpRSlGgVTSYBaBZHQJOuvYcvM8p1fZQoaAZoCWgPQwhUUiegiRhLQJSGlFKUaBVL4WgWR0CTrsweeWfLdX2UKGgGaAloD0MI9pmzPmWPcUCUhpRSlGgVTUIBaBZHQJOwjrKNhmZ1fZQoaAZoCWgPQwjXhopxfnZyQJSGlFKUaBVNBgFoFkdAk7EEF0PpZHV9lChoBmgJaA9DCEaXN4erxXFAlIaUUpRoFU1EAWgWR0CTsb55JK8MdWUu"
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 248,
79
- "n_steps": 1024,
80
  "gamma": 0.999,
81
- "gae_lambda": 0.98,
82
  "ent_coef": 0.01,
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
  "batch_size": 64,
86
- "n_epochs": 4,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
  ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
 
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1671659782991221979,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
 
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALpAAb5PZU09dKk6PkLOl76z/pS9R1KdPQAAAAAAAAAAgDiJvY+idrqQHqO6Dy2XtecqKrspzr45AAAAAAAAgD8dmJ++jhn4PgT9Qz2KHAy/2eQ9vtH7tD0AAAAAAAAAAJpLbjwBxua8In5IvQ9YIL51upS7s5efOwAAgD8AAIA/7SF7PpruIr0HyKE7uXA5ujFdjr7sgwW7AACAPwAAgD8GKC8+vmeRP06Diz670Pe+2YtjPiCCzjoAAAAAAAAAAIB6r76CmL298qODPN9JTbv6y+I+09TWPAAAgD8AAAAAZk5EvJSDrTsmHUa+gEJvvsmZ773AiTE/AACAPwAAAAAVdoa+XEeUPmdcrD5Kcbe+gJyZvf76Az4AAAAAAAAAAD0xV77fBlU/KnWYvnloIb+4Xre+af6NvQAAAAAAAAAAM+SlPYLEmz7zvuu9mRbvvsdf6zyK2N29AAAAAAAAAACaibs6w21YulCD3Ts7r6s5Ay6Fu/QBpzgAAIA/AACAP/sbjb5Zr8U+E+NAPq3A+77VDJW+k2SfPQAAAAAAAAAAs2h2PfG8pj/K3GQ+ESMCv1HUvT3yVi4+AAAAAAAAAABzzgw+IyYYPY1YIb6RlJu+oLCbPJ6/ObwAAAAAAAAAADPMn7wffYm5QFLxOSD0jzavGTO6qoYNuQAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
 
69
  "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVLxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJzPeVnoFT0CUhpRSlIwBbJRLmowBdJRHQKwdDuejEeh1fZQoaAZoCWgPQwjC+6pc6DdxQJSGlFKUaBVL6GgWR0CsHSdq1w5vdX2UKGgGaAloD0MIpZ9wdus+b0CUhpRSlGgVS+9oFkdArB1yQo1DSnV9lChoBmgJaA9DCClbJO2G6HJAlIaUUpRoFUv5aBZHQKwddvnbItF1fZQoaAZoCWgPQwgFiljEcJZzQJSGlFKUaBVL+2gWR0CsHZ0RODaodX2UKGgGaAloD0MIwXKEDOThSECUhpRSlGgVS7BoFkdArB3IYFaB7XV9lChoBmgJaA9DCAtBDkqY6UlAlIaUUpRoFUuHaBZHQKwd3XBguyx1fZQoaAZoCWgPQwgjn1c8df9tQJSGlFKUaBVLz2gWR0CsHfrux8lYdX2UKGgGaAloD0MIEvjDzz8RckCUhpRSlGgVS/NoFkdArB4tqWTouHV9lChoBmgJaA9DCDW214JeknJAlIaUUpRoFUvqaBZHQKwfNtu1ndx1fZQoaAZoCWgPQwgw8UdRZ8hTQJSGlFKUaBVN6ANoFkdArB9LZFocrHV9lChoBmgJaA9DCDW0AdhABHNAlIaUUpRoFUvsaBZHQKwfY5dWyTp1fZQoaAZoCWgPQwiif4KLVRVxQJSGlFKUaBVLw2gWR0CsH70ADJU6dX2UKGgGaAloD0MIw9Zs5eVjcECUhpRSlGgVS9BoFkdArB//oPkJbHV9lChoBmgJaA9DCOsbmNwoeXJAlIaUUpRoFUvVaBZHQKwgKDdxhlV1fZQoaAZoCWgPQwi3lzRGq1NxQJSGlFKUaBVL62gWR0CsIDkBKcurdX2UKGgGaAloD0MIyQVn8LdNcUCUhpRSlGgVS9loFkdArCCGfPHDJnV9lChoBmgJaA9DCMVZETVRU29AlIaUUpRoFUvVaBZHQKwgnMEA5rB1fZQoaAZoCWgPQwjS5c3hGpVwQJSGlFKUaBVLy2gWR0CsIKcRcu8LdX2UKGgGaAloD0MI2h1SDBDKcECUhpRSlGgVS/BoFkdArCDSgkC3gHV9lChoBmgJaA9DCNpyLsUVB3JAlIaUUpRoFUvXaBZHQKwg4paRp111fZQoaAZoCWgPQwiKWMSww/xkQJSGlFKUaBVN6ANoFkdArCELrgOz6nV9lChoBmgJaA9DCGfUfJU8tXBAlIaUUpRoFUveaBZHQKwhGLYwqRV1fZQoaAZoCWgPQwiRmnYxjftyQJSGlFKUaBVL7mgWR0CsIXAw482adX2UKGgGaAloD0MIt3u5T063cUCUhpRSlGgVTaUBaBZHQKwitCE6DGt1fZQoaAZoCWgPQwiKsOHpVWhxQJSGlFKUaBVL7WgWR0CsIwHPmgandX2UKGgGaAloD0MICFqBIauPcUCUhpRSlGgVS95oFkdArCNBGDtgKHV9lChoBmgJaA9DCPQz9bpFrnFAlIaUUpRoFUvNaBZHQKwjZms/6ft1fZQoaAZoCWgPQwj3ItqOqY1PQJSGlFKUaBVLv2gWR0CsI52DHwPRdX2UKGgGaAloD0MI2gBsQISpc0CUhpRSlGgVS9VoFkdArCPl+d9Uj3V9lChoBmgJaA9DCADGM2hoDHJAlIaUUpRoFUv1aBZHQKwkO32mHgx1fZQoaAZoCWgPQwhvL2mMlldyQJSGlFKUaBVNAAFoFkdArCRjtZ3cHnV9lChoBmgJaA9DCJ28yAQ8V3JAlIaUUpRoFUvcaBZHQKwkaTufEn91fZQoaAZoCWgPQwhNZVHYBalwQJSGlFKUaBVL7GgWR0CsJJ2Ifr8jdX2UKGgGaAloD0MIeO+oMSHAc0CUhpRSlGgVTW0BaBZHQKwkpzT4L1F1fZQoaAZoCWgPQwjajNMQ1TxuQJSGlFKUaBVLx2gWR0CsJgnt4RmLdX2UKGgGaAloD0MIxuHMr+b6b0CUhpRSlGgVS+RoFkdArCbkf1YhdXV9lChoBmgJaA9DCJQxPszec3JAlIaUUpRoFUvBaBZHQKwm5Lg4wRJ1fZQoaAZoCWgPQwgaFTjZBmBtQJSGlFKUaBVL02gWR0CsJv86vJRwdX2UKGgGaAloD0MI6ui4GtkdcUCUhpRSlGgVS95oFkdArCcKkIomX3V9lChoBmgJaA9DCLLxYIvdH3JAlIaUUpRoFU1sAWgWR0CsJ2aGHpKSdX2UKGgGaAloD0MIhgDg2LO2b0CUhpRSlGgVS99oFkdArCe75O8CgnV9lChoBmgJaA9DCIaPiCmRPnFAlIaUUpRoFUvGaBZHQKwnxy925hB1fZQoaAZoCWgPQwiFs1vL5LhtQJSGlFKUaBVLy2gWR0CsKB+rMkhSdX2UKGgGaAloD0MIO/vKg3Twb0CUhpRSlGgVS9loFkdArChScAimmHV9lChoBmgJaA9DCFKAKJgx1W9AlIaUUpRoFUvzaBZHQKwoY3Ytg8d1fZQoaAZoCWgPQwj8AQ8MoFBxQJSGlFKUaBVL6WgWR0CsKGKv/zasdX2UKGgGaAloD0MIxCPx8rTkcUCUhpRSlGgVTVYCaBZHQKwoiWGATZh1fZQoaAZoCWgPQwjIlA9BFftzQJSGlFKUaBVNRwJoFkdArClNy/9Hc3V9lChoBmgJaA9DCM7Cnnb4+G9AlIaUUpRoFUvLaBZHQKwpYEEC/491fZQoaAZoCWgPQwjtm/urx09EQJSGlFKUaBVLqWgWR0CsKkx2bG3ndX2UKGgGaAloD0MIK/uuCD7jckCUhpRSlGgVS/doFkdArCrKQLeANHV9lChoBmgJaA9DCIEgQIYOv3BAlIaUUpRoFUvyaBZHQKwq175VOsV1fZQoaAZoCWgPQwgddAmHnoxyQJSGlFKUaBVL4GgWR0CsKt/WDpTudX2UKGgGaAloD0MIFytqMA1pbkCUhpRSlGgVS9NoFkdArCr6iqQzUXV9lChoBmgJaA9DCEYnS6034nJAlIaUUpRoFU0IAWgWR0CsKxSUkfLcdX2UKGgGaAloD0MIlQ1rKouUSkCUhpRSlGgVS7loFkdArCshWFN+LHV9lChoBmgJaA9DCP/qcd/qW3FAlIaUUpRoFU0HAWgWR0CsKydBKL88dX2UKGgGaAloD0MIKelhaHXZcUCUhpRSlGgVTesCaBZHQKwrmaH9FWp1fZQoaAZoCWgPQwgpIsMq3slyQJSGlFKUaBVL2mgWR0CsK6hzFMqSdX2UKGgGaAloD0MIDtdqD7t1cECUhpRSlGgVS9FoFkdArCurnkkrw3V9lChoBmgJaA9DCJrPudu1nHFAlIaUUpRoFUvmaBZHQKwrzaYeDFt1fZQoaAZoCWgPQwg3x7lNOFRxQJSGlFKUaBVL0mgWR0CsLHMOwxFidX2UKGgGaAloD0MIhnMNM3QDcUCUhpRSlGgVTQgBaBZHQKwtMfT1CgN1fZQoaAZoCWgPQwgxCRfyCBRSQJSGlFKUaBVLoWgWR0CsLWy8BdUsdX2UKGgGaAloD0MI+tUcIBi1cUCUhpRSlGgVS8ZoFkdArC20s189fXV9lChoBmgJaA9DCO6UDtZ/h25AlIaUUpRoFUvEaBZHQKwt2dK/VRV1fZQoaAZoCWgPQwjrOel9oytxQJSGlFKUaBVLy2gWR0CsLd3jENvwdX2UKGgGaAloD0MIQ8u6fyzMQECUhpRSlGgVS6NoFkdArC4OlANXo3V9lChoBmgJaA9DCELPZtXnE3FAlIaUUpRoFUvfaBZHQKwuYZXMhX91fZQoaAZoCWgPQwivesA8JKBwQJSGlFKUaBVL2mgWR0CsLl9zOopAdX2UKGgGaAloD0MI43DmV3OpY0CUhpRSlGgVTegDaBZHQKwutrOZ9eB1fZQoaAZoCWgPQwhMjjulg9FyQJSGlFKUaBVNBAFoFkdArC68qMFUynV9lChoBmgJaA9DCDkqN1HLj25AlIaUUpRoFUvcaBZHQKwu7/9YOlR1fZQoaAZoCWgPQwiWl/xPfrBvQJSGlFKUaBVL82gWR0CsLzDDKoycdX2UKGgGaAloD0MIDw2LUReGcECUhpRSlGgVS+ZoFkdArC844MnZ03V9lChoBmgJaA9DCN46/3aZanNAlIaUUpRoFUvkaBZHQKwv5FLnLaF1fZQoaAZoCWgPQwg0L4fd9zpyQJSGlFKUaBVNDgJoFkdArC/suOCGvnV9lChoBmgJaA9DCEYL0LZa3nBAlIaUUpRoFUvSaBZHQKwwrpjc2zh1fZQoaAZoCWgPQwjZtb3dUlVxQJSGlFKUaBVL8mgWR0CsMLVoxpL3dX2UKGgGaAloD0MIwQDCh9J0cUCUhpRSlGgVS9hoFkdArDDgpKBd2XV9lChoBmgJaA9DCNYdi22SWXNAlIaUUpRoFUv1aBZHQKww6u6ErXl1fZQoaAZoCWgPQwhywK4mjyJyQJSGlFKUaBVL5GgWR0CsMTUnw5NodX2UKGgGaAloD0MInRA66FKwcECUhpRSlGgVS+loFkdArDGN8Rcu8XV9lChoBmgJaA9DCAMlBRaA23FAlIaUUpRoFUvfaBZHQKwx9t6X0Gx1fZQoaAZoCWgPQwjgSnZshA5zQJSGlFKUaBVL92gWR0CsMhSvTw2EdX2UKGgGaAloD0MIOQzmr1ANcUCUhpRSlGgVS/doFkdArDIZ3FDOT3V9lChoBmgJaA9DCJ4GDJI+fnFAlIaUUpRoFUvYaBZHQKwyKhoM8YB1fZQoaAZoCWgPQwjHLHsS2M5NQJSGlFKUaBVLp2gWR0CsMjE12q1gdX2UKGgGaAloD0MI31FjQgywc0CUhpRSlGgVTQkBaBZHQKwzloGIKtx1fZQoaAZoCWgPQwimXyLeunBzQJSGlFKUaBVLu2gWR0CsM5vCVKPGdX2UKGgGaAloD0MIVg+Yh0wnRUCUhpRSlGgVS5hoFkdArDPIfW+XaHV9lChoBmgJaA9DCGCuRQsQQHFAlIaUUpRoFU2uAWgWR0CsM/3IEKVqdX2UKGgGaAloD0MIlgoqqn5McUCUhpRSlGgVS+toFkdArDQRMN+b3HV9lChoBmgJaA9DCFIq4Qk9xnFAlIaUUpRoFUvMaBZHQKw0LSvTw2F1fZQoaAZoCWgPQwi1/SsrzQJyQJSGlFKUaBVNrwFoFkdArDRtVrAP/nV9lChoBmgJaA9DCMK+nUSEO0tAlIaUUpRoFUuxaBZHQKw0sOG0u151fZQoaAZoCWgPQwi3Qe23NltxQJSGlFKUaBVL3GgWR0CsNT2aUiY+dX2UKGgGaAloD0MI5Lz/j5ORckCUhpRSlGgVS+BoFkdArDVIqXnhbXV9lChoBmgJaA9DCC6Oyk0U/XBAlIaUUpRoFUvqaBZHQKw1kmzjWCp1ZS4="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
+ "_n_updates": 310,
79
+ "n_steps": 2048,
80
  "gamma": 0.999,
81
+ "gae_lambda": 0.95,
82
  "ent_coef": 0.01,
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
  "batch_size": 64,
86
+ "n_epochs": 10,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
  ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
ppo-LunarLander-sman/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5a56c0e93fcdf2ddff7c24ac8b5eb12d490dd5a852884a4e4dfa9f713ba7ded5
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:898cd6fb3bb514b7bbc5f0a361dfdca4037325c1f70d47957cc7431e2c29fe20
3
  size 87929
ppo-LunarLander-sman/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5e2162d0190c9d42c9ab97100ef7db3f3168dde7d76b4c5fddb6a2c274572a41
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7aa0018450c9af5200d12e05e214b21aab1e754b26f64efcc152fb699878744
3
  size 43201
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 258.25033134873445, "std_reward": 17.088496610871022, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-21T21:50:12.064314"}
 
1
+ {"mean_reward": 272.15215872884335, "std_reward": 13.376510768131993, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-21T22:42:10.564730"}