smanduru commited on
Commit
fb33dfa
1 Parent(s): 57b7071

Initial Commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 242.43 +/- 18.54
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 258.25 +/- 17.09
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7fafa05160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7fafa051f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7fafa05280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7fafa05310>", "_build": "<function ActorCriticPolicy._build at 0x7f7fafa053a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f7fafa05430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7fafa054c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7fafa05550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7fafa055e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7fafa05670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7fafa05700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7fafa040f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671605840556453047, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpBV7sK10i3ej3dOXN4tDS54467sQQCuQAAgD8AAIA/GswRPRRYtbpHicK2qx0GMBbl2rhACOA1AACAPwAAgD9oxIK+SE2EPycrqb3pz36+YPonviUxpDwAAAAAAAAAAGZEIb3DUTK6lDqeujQzNLZu0BW6s3mkNQAAgD8AAIA/AOOVvOHQrbrx3sO6c8rBtbRknrioceA5AACAPwAAgD8zF0W99ohfum5EwzqaQbw1OOcXuzX55LkAAIA/AACAPzMI5LxxDVS5AJ2FuoDEwLQmsEo6EkShOQAAgD8AAIA/ZvxevUjXkbp2SWk2JM9iMX+W4LpLNYq1AACAPwAAgD8AKAu8KcAUurWH57l//qu24punulrgGzYAAIA/AACAP2bFjL2e7qE/DnBAvgx1br4oBHa9WomCvQAAAAAAAAAA2mm7PVIA1LlaN6C7Htj4N1Ztzjvmn8C2AACAPwAAgD+zrMQ94X6NujjOSbvvzr4yoBQUuxpGZzoAAIA/AACAPwC1y7zqReg+2DL4uxFxQr7DJ3+8bttKPQAAAAAAAAAA5o4qPVxbZbrSPtQ6GkqdNSdeqrl+T/m5AACAPwAAgD8zSbs9ri2Dur4IxrzCPa84QmHUuk6gHLgAAIA/AAAAAAAcfDwpcGe6e0MautP5DLZLH325308xOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMo6R7JGpY0CUhpRSlIwBbJRN6AOMAXSUR0CQiS+M6zVudX2UKGgGaAloD0MIJ8KGp1eGY0CUhpRSlGgVTegDaBZHQJCJv/6wdKd1fZQoaAZoCWgPQwjvHMpQlehjQJSGlFKUaBVN6ANoFkdAkIpAs9SuQ3V9lChoBmgJaA9DCK5H4XoUJWNAlIaUUpRoFU3oA2gWR0CQkmYqXnhbdX2UKGgGaAloD0MIvJaQD/pCYUCUhpRSlGgVTegDaBZHQJCTB3OfNA11fZQoaAZoCWgPQwiWdmout2FiQJSGlFKUaBVN6ANoFkdAkJS/uPV/c3V9lChoBmgJaA9DCI5AvK7ftmNAlIaUUpRoFU3oA2gWR0CQnWpyp71JdX2UKGgGaAloD0MI/TOD+MDSY0CUhpRSlGgVTegDaBZHQJCe4pF1B+p1fZQoaAZoCWgPQwjfisQENV9hQJSGlFKUaBVN6ANoFkdAkJ+LWNFSbnV9lChoBmgJaA9DCB0FiIIZEmFAlIaUUpRoFU3oA2gWR0CQoSxaxHG0dX2UKGgGaAloD0MIfQVpxiJ2ZkCUhpRSlGgVTegDaBZHQJCyfB7/n4h1fZQoaAZoCWgPQwiCNjl80lJlQJSGlFKUaBVN6ANoFkdAkLtkk0JnhHV9lChoBmgJaA9DCAYujzUjCmVAlIaUUpRoFU3oA2gWR0CQvEn/1g6VdX2UKGgGaAloD0MI4PPDCOHHW0CUhpRSlGgVTegDaBZHQJC979VFQVN1fZQoaAZoCWgPQwj03hgCAMZiQJSGlFKUaBVN6ANoFkdAkL3yXdCVr3V9lChoBmgJaA9DCKGgFK1cTmJAlIaUUpRoFU3oA2gWR0CQ1yhTwUg0dX2UKGgGaAloD0MIXATG+gZMXkCUhpRSlGgVTegDaBZHQJDbNYSxqwh1fZQoaAZoCWgPQwhOKhpr/49kQJSGlFKUaBVN6ANoFkdAkNviUC7sfXV9lChoBmgJaA9DCIAqbtximFxAlIaUUpRoFU3oA2gWR0CQ3HODrZ8KdX2UKGgGaAloD0MIc0nVdhMTZECUhpRSlGgVTegDaBZHQJDnMTQE6kt1fZQoaAZoCWgPQwiRfvs68FNhQJSGlFKUaBVN6ANoFkdAkOf7WI42j3V9lChoBmgJaA9DCMoYH2YvKmJAlIaUUpRoFU3oA2gWR0CQ6jowmE5AdX2UKGgGaAloD0MIaxFRTN70YkCUhpRSlGgVTegDaBZHQJD1GrDIikh1fZQoaAZoCWgPQwiRmQtcHp5iQJSGlFKUaBVN6ANoFkdAkPbRS9/SY3V9lChoBmgJaA9DCBZNZyeDgFpAlIaUUpRoFU3oA2gWR0CQ95oBaLXMdX2UKGgGaAloD0MI7PoFu2FnWUCUhpRSlGgVTegDaBZHQJD5eObRWtF1fZQoaAZoCWgPQwgCgjl6fIVgQJSGlFKUaBVN6ANoFkdAkQswbp/wzHV9lChoBmgJaA9DCKNaRBQTJWJAlIaUUpRoFU3oA2gWR0CRE8RAbADadX2UKGgGaAloD0MIPiMRGsG8YUCUhpRSlGgVTegDaBZHQJEUlT/ACXB1fZQoaAZoCWgPQwg4ns+AetxiQJSGlFKUaBVN6ANoFkdAkRYVjd56dHV9lChoBmgJaA9DCFLuPsdHd15AlIaUUpRoFU3oA2gWR0CRFhedCmdidX2UKGgGaAloD0MIFRvzOuLfXECUhpRSlGgVTegDaBZHQJEb3WpZOi51fZQoaAZoCWgPQwhFK/cCs59iQJSGlFKUaBVN6ANoFkdAkTIfVRUFS3V9lChoBmgJaA9DCLk16bZEIFhAlIaUUpRoFU3oA2gWR0CRMq9WIXTFdX2UKGgGaAloD0MIukkMAivMX0CUhpRSlGgVTegDaBZHQJEzJH5Jsft1fZQoaAZoCWgPQwgFajF4GE9kQJSGlFKUaBVN6ANoFkdAkTwfBi1Aq3V9lChoBmgJaA9DCMzs8xjlnF9AlIaUUpRoFU3oA2gWR0CRPM5MlC1JdX2UKGgGaAloD0MIiNUfYRi8YECUhpRSlGgVTegDaBZHQJE+yyt3fQ91fZQoaAZoCWgPQwjlDTDzHaxKQJSGlFKUaBVNTgFoFkdAkUcn9R77bnV9lChoBmgJaA9DCBvXv+uzKWRAlIaUUpRoFU3oA2gWR0CRSUMMZxaQdX2UKGgGaAloD0MIdm9FYoLVYUCUhpRSlGgVTegDaBZHQJFK66g/Tsp1fZQoaAZoCWgPQwhSD9HojjtgQJSGlFKUaBVN6ANoFkdAkUub+Lm6oXV9lChoBmgJaA9DCMVx4NXyT2FAlIaUUpRoFU3oA2gWR0CRTWouPFNtdX2UKGgGaAloD0MIB+3Vx0OHZUCUhpRSlGgVTegDaBZHQJFfYYP5HmR1fZQoaAZoCWgPQwh/aydKQrxXQJSGlFKUaBVN6ANoFkdAkWiXpbD/EXV9lChoBmgJaA9DCJNTO8PU/F1AlIaUUpRoFU3oA2gWR0CRaYbHIZIhdX2UKGgGaAloD0MIuB6F61FYYkCUhpRSlGgVTegDaBZHQJFrPJRwZO11fZQoaAZoCWgPQwi/f/PixAtdQJSGlFKUaBVN6ANoFkdAkWs/CMxXXHV9lChoBmgJaA9DCGFSfHzCuGJAlIaUUpRoFU3oA2gWR0CRcYIGyHEddX2UKGgGaAloD0MIuk24V+ZyZECUhpRSlGgVTegDaBZHQJGISscQyyl1fZQoaAZoCWgPQwha9iSwuVphQJSGlFKUaBVN6ANoFkdAkYmB2St/4XV9lChoBmgJaA9DCBeARunS/ztAlIaUUpRoFU0aAWgWR0CRjnr7O3UhdX2UKGgGaAloD0MIrFj8prBYQUCUhpRSlGgVTVkBaBZHQJGTY8KXv6V1fZQoaAZoCWgPQwiPcFrwonFjQJSGlFKUaBVN6ANoFkdAkZPZZKWcBnV9lChoBmgJaA9DCCECDqFKr0FAlIaUUpRoFU1RAWgWR0CRlEkd3jdYdX2UKGgGaAloD0MIKJmc2hkHZECUhpRSlGgVTegDaBZHQJGUiSW7e2x1fZQoaAZoCWgPQwhgsBu2LVRiQJSGlFKUaBVN6ANoFkdAkZZj4pMHr3V9lChoBmgJaA9DCAltOZfirEBAlIaUUpRoFU0gAWgWR0CRmyozN2TxdX2UKGgGaAloD0MI3GW/7nRyZECUhpRSlGgVTegDaBZHQJGdSAFxGUh1fZQoaAZoCWgPQwjIXYQpytdaQJSGlFKUaBVN6ANoFkdAkZ79vCMxXXV9lChoBmgJaA9DCDY9KChFMGBAlIaUUpRoFU3oA2gWR0CRoETyJ9ApdX2UKGgGaAloD0MIHCWvzjG8YkCUhpRSlGgVTegDaBZHQJGgz2Dg62h1fZQoaAZoCWgPQwhfmiLA6bFXQJSGlFKUaBVN6ANoFkdAkaI8LORkmXV9lChoBmgJaA9DCGb0o+GUhUFAlIaUUpRoFU1AAWgWR0CRpaaZQYUGdX2UKGgGaAloD0MINLxZg/fOYECUhpRSlGgVTegDaBZHQJGw8M1CPZJ1fZQoaAZoCWgPQwgFie3ugXVkQJSGlFKUaBVN6ANoFkdAkbtaMBIWg3V9lChoBmgJaA9DCLwDPGlhVGJAlIaUUpRoFU3oA2gWR0CRwmsw+MZQdX2UKGgGaAloD0MILEgzFk0jW0CUhpRSlGgVTegDaBZHQJHZGFEiMYN1fZQoaAZoCWgPQwixNPCjGlddQJSGlFKUaBVN6ANoFkdAkd93xJ/XoXV9lChoBmgJaA9DCA0dO6jEiltAlIaUUpRoFU3oA2gWR0CR5Fp9qk/KdX2UKGgGaAloD0MI9wSJ7e4EXUCUhpRSlGgVTegDaBZHQJHkzQ1JlJ91fZQoaAZoCWgPQwhCJEOOrZxcQJSGlFKUaBVN6ANoFkdAkeU/ywwCbXV9lChoBmgJaA9DCCzWcJF7mGFAlIaUUpRoFU3oA2gWR0CR52e4Cp3pdX2UKGgGaAloD0MIj6UPXVBEY0CUhpRSlGgVTegDaBZHQJHsg4CIUJx1fZQoaAZoCWgPQwgQCHQmbb1rQJSGlFKUaBVN3QNoFkdAke57ApKBd3V9lChoBmgJaA9DCOSghJm2TFlAlIaUUpRoFU3oA2gWR0CR8YuG9HtndX2UKGgGaAloD0MIOSaL+4+3XUCUhpRSlGgVTegDaBZHQJHzO4oZydZ1fZQoaAZoCWgPQwjElEiiFzhhQJSGlFKUaBVN6ANoFkdAkfQIBvJiiXV9lChoBmgJaA9DCJYkz/V91VpAlIaUUpRoFU3oA2gWR0CR9eHNX5nEdX2UKGgGaAloD0MINzgR/dq/ZUCUhpRSlGgVTegDaBZHQJH6OKuSwGJ1fZQoaAZoCWgPQwhPH4E//DtiQJSGlFKUaBVN6ANoFkdAkgTFjd56dHV9lChoBmgJaA9DCMpUwaikoWRAlIaUUpRoFU3oA2gWR0CSDeVENOM3dX2UKGgGaAloD0MI+U7MejGhZECUhpRSlGgVTegDaBZHQJIUKLYPGyZ1fZQoaAZoCWgPQwjdQlciULFeQJSGlFKUaBVN6ANoFkdAkhgKjzqbB3V9lChoBmgJaA9DCM9nQL2ZDGZAlIaUUpRoFU3oA2gWR0CSMM9b5dnkdX2UKGgGaAloD0MIpS4Zx0j+YUCUhpRSlGgVTegDaBZHQJI1hrZamoB1fZQoaAZoCWgPQwjZz2IpkitaQJSGlFKUaBVN6ANoFkdAkjX7PldTpHV9lChoBmgJaA9DCHL9uz7zeWFAlIaUUpRoFU3oA2gWR0CSNnIMjNY9dX2UKGgGaAloD0MIWwpI+59IY0CUhpRSlGgVTegDaBZHQJI4wokRjBl1fZQoaAZoCWgPQwjuQQjIF/tgQJSGlFKUaBVN6ANoFkdAkj3++23KCHV9lChoBmgJaA9DCNdtUPstMmNAlIaUUpRoFU3oA2gWR0CSP4HXVbzLdX2UKGgGaAloD0MIavgW1o2NWkCUhpRSlGgVTegDaBZHQJJB5F8XvYx1fZQoaAZoCWgPQwhdbcX+MqdiQJSGlFKUaBVN6ANoFkdAkkM/3vhIfHV9lChoBmgJaA9DCKGA7WDEIF5AlIaUUpRoFU3oA2gWR0CSQ9akRBeHdX2UKGgGaAloD0MIU5PgDemPYUCUhpRSlGgVTegDaBZHQJJFUp2ECeV1fZQoaAZoCWgPQwgz+WabmwxhQJSGlFKUaBVN6ANoFkdAkki3pGFzuHV9lChoBmgJaA9DCLag98aQPGFAlIaUUpRoFU3oA2gWR0CSU+PoV2zOdX2UKGgGaAloD0MInMJKBZUMYUCUhpRSlGgVTegDaBZHQJJeEa72+PB1fZQoaAZoCWgPQwgep+hILklfQJSGlFKUaBVN6ANoFkdAkmSDdP+GXXV9lChoBmgJaA9DCLSwpx1+lmBAlIaUUpRoFU3oA2gWR0CSaGu3trsTdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3962f7c310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3962f7c3a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3962f7c430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3962f7c4c0>", "_build": "<function ActorCriticPolicy._build at 0x7f3962f7c550>", "forward": "<function ActorCriticPolicy.forward at 0x7f3962f7c5e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3962f7c670>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3962f7c700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3962f7c790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3962f7c820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3962f7c8b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3962f767e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671657901567711166, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNLJ71XHAk/QtCavT4lqL7j45y9c33euwAAAAAAAAAAzUi+uzioGz9Jpiq9x1qVvk5dnTwTyRu+AAAAAAAAAABmkQa+dbKpPuKigj20OnW+oGj1vGqJmz0AAAAAAAAAAGaEND26zY0+Wip0u3tkir4Dwxm9osqBvQAAAAAAAAAARsRrvtTd9rzd0dm7yZVdO2sEXT5z19I6AACAPwAAgD8zEgS+cfeqPpuNlz1O8xW+EmZ5vILvYL0AAAAAAAAAAKbgij2S7ho+1o/hvUaPd76MBVO9u9mhPQAAAAAAAAAAM2qMPoeZaD9DvDC+RmqXvi/DHD7SBdC9AAAAAAAAAAAz1Ca9HP+QPwMs0r3LTvW+Zh29vLul67wAAAAAAAAAAKZBv702C4I/g/ixvT+c8r4OHCm8VwERvQAAAAAAAAAATXdkvUjzpboINlq7FIT8tQG2z7rtImE1AACAPwAAgD8zC+M74726P/t1gz0aWL49fhqAu33uaDwAAAAAAAAAAABOYLzX82O5nKKSutUYzjSiuxw6NU6rOQAAgD8AAIA/sxvePTEMlz6+3Gi+WWaTvvjnmjwx9kO9AAAAAAAAAACNCI69e5aXutg+bDOyBBQr90gqOoglzLMAAIA/AACAP61Ra75g+JY+3LayPp6QHb4vgME8areZPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/5JUphjQckCUhpRSlIwBbJRNCwGMAXSUR0CTWJc9nscAdX2UKGgGaAloD0MIvALRkzJib0CUhpRSlGgVTR4BaBZHQJNZrVQQ+U11fZQoaAZoCWgPQwiLijid5N9xQJSGlFKUaBVNDgFoFkdAk1nAhKUVz3V9lChoBmgJaA9DCHtq9dVVa3FAlIaUUpRoFUv5aBZHQJNabIsAeaN1fZQoaAZoCWgPQwjknq7u2D9vQJSGlFKUaBVNHwFoFkdAk1r4znA6+3V9lChoBmgJaA9DCF0yjpFsqW5AlIaUUpRoFU0gAWgWR0CTWwBBiTdMdX2UKGgGaAloD0MIdVd2weCebUCUhpRSlGgVTSgBaBZHQJNbs+t8uz11fZQoaAZoCWgPQwhBnfLohqJwQJSGlFKUaBVNFQFoFkdAk1xmZiNKiHV9lChoBmgJaA9DCOjaF9CLd25AlIaUUpRoFU0lAWgWR0CTXZC+10DEdX2UKGgGaAloD0MIBoTWw9excECUhpRSlGgVTS4BaBZHQJNdnriVB2R1fZQoaAZoCWgPQwjxgR3/hQZyQJSGlFKUaBVNMQFoFkdAk12lkMCtBHV9lChoBmgJaA9DCAq9/iS+Fm1AlIaUUpRoFU0UAWgWR0CTXbV7hNucdX2UKGgGaAloD0MIiUFg5RAFc0CUhpRSlGgVTUwBaBZHQJNeJXeWOZN1fZQoaAZoCWgPQwhZ3H9kOnxxQJSGlFKUaBVNBgFoFkdAk16MiW3Sa3V9lChoBmgJaA9DCCP3dHVHjHBAlIaUUpRoFU0iAWgWR0CTYDsXizcAdX2UKGgGaAloD0MIKChFK/eTcECUhpRSlGgVTWIBaBZHQJNjQ/3WWhR1fZQoaAZoCWgPQwhB8zl3O1ZwQJSGlFKUaBVNNgFoFkdAk2P7lzU7S3V9lChoBmgJaA9DCHhEhepm+HBAlIaUUpRoFU09AWgWR0CTZFx6OYICdX2UKGgGaAloD0MIidFzC138cECUhpRSlGgVTR4BaBZHQJNkdW3jMmp1fZQoaAZoCWgPQwh4YtaLofxvQJSGlFKUaBVNKAFoFkdAk2TivLX+VHV9lChoBmgJaA9DCNLijGGOAXFAlIaUUpRoFU0bAWgWR0CTZTRekYXPdX2UKGgGaAloD0MIea2E7pJAS0CUhpRSlGgVS81oFkdAk2VHb/Ot4nV9lChoBmgJaA9DCJOKxtrfCG5AlIaUUpRoFU17AWgWR0CTZZBYmsvJdX2UKGgGaAloD0MIaOp1i8AocECUhpRSlGgVS/poFkdAk2YRCMPz4HV9lChoBmgJaA9DCKMjufxHTXJAlIaUUpRoFU0fAWgWR0CTZgtRvWH2dX2UKGgGaAloD0MIdR2qKcmockCUhpRSlGgVTQ0BaBZHQJNmrIBBAwB1fZQoaAZoCWgPQwi7YduizF5vQJSGlFKUaBVNFwFoFkdAk2cLcwg1WXV9lChoBmgJaA9DCNGRXP6DvXFAlIaUUpRoFU0oAWgWR0CTZ19Ujs2OdX2UKGgGaAloD0MIegCL/Lo9ckCUhpRSlGgVTSwBaBZHQJNom7z06HV1fZQoaAZoCWgPQwicGJKTiTpvQJSGlFKUaBVNMAFoFkdAk2qIWYWtVHV9lChoBmgJaA9DCGTmApfH5XBAlIaUUpRoFU0WAWgWR0CTbaayKNyYdX2UKGgGaAloD0MIZTkJpS+LckCUhpRSlGgVTRoBaBZHQJNtt9RaX8h1fZQoaAZoCWgPQwg+kpIeRspzQJSGlFKUaBVNBgFoFkdAk23HC9AX23V9lChoBmgJaA9DCH9qvHQT+nFAlIaUUpRoFU01AWgWR0CTbcg0CRwIdX2UKGgGaAloD0MIJoqQup1NTkCUhpRSlGgVS99oFkdAk27ryxzJZHV9lChoBmgJaA9DCD5CzZAqtW9AlIaUUpRoFU0iAWgWR0CTbyn7pFCtdX2UKGgGaAloD0MIy/Pg7qzpbkCUhpRSlGgVTQEBaBZHQJNvRpKzzEt1fZQoaAZoCWgPQwhoA7AB0VVxQJSGlFKUaBVNIgFoFkdAk2+5t78ejnV9lChoBmgJaA9DCBYYsrqVQ3FAlIaUUpRoFU0qAWgWR0CTcALwnYxtdX2UKGgGaAloD0MIu5hmutdDcECUhpRSlGgVTUMBaBZHQJNwCneizs11fZQoaAZoCWgPQwjMJyuG62VyQJSGlFKUaBVL9GgWR0CTcRvtdAxBdX2UKGgGaAloD0MIyatzDAgFcECUhpRSlGgVTXYBaBZHQJNxYr9VFQV1fZQoaAZoCWgPQwgo9PqT+H1sQJSGlFKUaBVNVwFoFkdAk3J/QBxPwnV9lChoBmgJaA9DCNGy7h9LjHBAlIaUUpRoFU08AWgWR0CTdfAZsKsudX2UKGgGaAloD0MIDycwndZkbECUhpRSlGgVTQ0BaBZHQJN3z3Hq/ud1fZQoaAZoCWgPQwglBKvqpYVxQJSGlFKUaBVNFQFoFkdAk3gdW2gFo3V9lChoBmgJaA9DCAN3oE65ZHJAlIaUUpRoFUvsaBZHQJN4Qrxy4nZ1fZQoaAZoCWgPQwhYN94d2YRxQJSGlFKUaBVNIAFoFkdAk3jBWo3rEHV9lChoBmgJaA9DCF3dsdgmVXJAlIaUUpRoFU0ZAWgWR0CTedLgGbCrdX2UKGgGaAloD0MIHy+kw4PHcECUhpRSlGgVTQcBaBZHQJN6AKneizt1fZQoaAZoCWgPQwi9VGzMq/txQJSGlFKUaBVNTAFoFkdAk3qZhKDkEXV9lChoBmgJaA9DCFr0TgUcZXFAlIaUUpRoFU0fAWgWR0CTjyMsYl6adX2UKGgGaAloD0MInDV4XxUyc0CUhpRSlGgVTQYBaBZHQJOProSteUp1fZQoaAZoCWgPQwj5S4v6pOtwQJSGlFKUaBVNPgFoFkdAk5ArtiQT23V9lChoBmgJaA9DCGJodXKGcXBAlIaUUpRoFU0nAWgWR0CTkInTRYzSdX2UKGgGaAloD0MIxLXaw97tcUCUhpRSlGgVTQ0BaBZHQJORNBZ6lch1fZQoaAZoCWgPQwih2XVvRZFSQJSGlFKUaBVN6ANoFkdAk5F6ZML4OHV9lChoBmgJaA9DCH6nyYy3QXBAlIaUUpRoFU0XAWgWR0CTlHUEgW8AdX2UKGgGaAloD0MIpn9JKtMEbUCUhpRSlGgVTfsBaBZHQJOV1hTfixV1fZQoaAZoCWgPQwhRLSKKCXFxQJSGlFKUaBVNJAFoFkdAk5ZdSIgvDnV9lChoBmgJaA9DCOIhjJ9GSW1AlIaUUpRoFU05AWgWR0CTl2tvXK8tdX2UKGgGaAloD0MI3UJXItAXbECUhpRSlGgVTSABaBZHQJOYFhx5s0p1fZQoaAZoCWgPQwg9RnnmJYVxQJSGlFKUaBVNEgFoFkdAk5gmBBiTdXV9lChoBmgJaA9DCDi7tUyGxXBAlIaUUpRoFU1KAWgWR0CTmX/mT1TSdX2UKGgGaAloD0MItOVciitcbUCUhpRSlGgVTSwBaBZHQJOZvl5nlGR1fZQoaAZoCWgPQwiAuKtXEWdyQJSGlFKUaBVNfwFoFkdAk5pwy2x6fXV9lChoBmgJaA9DCDp15bN8LHFAlIaUUpRoFU0nAWgWR0CTmpiz9jwydX2UKGgGaAloD0MIKSDtfwBCckCUhpRSlGgVTT8BaBZHQJOa6x4Y77t1fZQoaAZoCWgPQwgWw9UBkBNjQJSGlFKUaBVN6ANoFkdAk5vIx1xKhHV9lChoBmgJaA9DCG9kHvkDHXJAlIaUUpRoFU3eAWgWR0CTnXNzbN8mdX2UKGgGaAloD0MIjuvf9RkRcECUhpRSlGgVTVwBaBZHQJOdg9fTkQx1fZQoaAZoCWgPQwjuXYO+NBxwQJSGlFKUaBVNeQFoFkdAk57HJkoWpXV9lChoBmgJaA9DCPfN/dVjzXBAlIaUUpRoFU0gAWgWR0CTntqqfe1sdX2UKGgGaAloD0MIhj3t8Nf9b0CUhpRSlGgVTSYBaBZHQJOgxiUgSvl1fZQoaAZoCWgPQwiSJAhXgCxwQJSGlFKUaBVNGQFoFkdAk6FIF3Y+S3V9lChoBmgJaA9DCBsPttjt6WtAlIaUUpRoFU0CAWgWR0CTomfT1CgLdX2UKGgGaAloD0MIcR3jios8cECUhpRSlGgVS/5oFkdAk6KHVCojwHV9lChoBmgJaA9DCCsU6X7OXnBAlIaUUpRoFU0/AWgWR0CToy4O+ZgHdX2UKGgGaAloD0MIcF8Hzhn0ckCUhpRSlGgVTUcBaBZHQJOjiYkVvdd1fZQoaAZoCWgPQwjABkSIqxRwQJSGlFKUaBVNiwFoFkdAk6PFnZkCm3V9lChoBmgJaA9DCB767laWJ3JAlIaUUpRoFU0ZAWgWR0CTpCLXcxj8dX2UKGgGaAloD0MI8+hGWBTKcECUhpRSlGgVTSABaBZHQJOkdwsGxD91fZQoaAZoCWgPQwhLPQtC+RVxQJSGlFKUaBVNMgFoFkdAk6VPCIk7fnV9lChoBmgJaA9DCKUyxRyEB25AlIaUUpRoFU0NAWgWR0CTpm/vOQhfdX2UKGgGaAloD0MIcOmY88y5ckCUhpRSlGgVS+1oFkdAk6a3EIgNgHV9lChoBmgJaA9DCOQwmL9CrW9AlIaUUpRoFU02AWgWR0CTp8drO7g9dX2UKGgGaAloD0MIxTwraQWfcECUhpRSlGgVTXYBaBZHQJOoWE/Spit1fZQoaAZoCWgPQwig/rPmx9lsQJSGlFKUaBVNLgFoFkdAk6jMWfseGXV9lChoBmgJaA9DCDj1geQdU3FAlIaUUpRoFU0XAWgWR0CTq/WCmMwUdX2UKGgGaAloD0MIqUpbXKPVckCUhpRSlGgVTUQBaBZHQJOsU7CBPKx1fZQoaAZoCWgPQwjIQnQInH9uQJSGlFKUaBVNPQFoFkdAk61bDMvAXXV9lChoBmgJaA9DCIm1+BSA0W9AlIaUUpRoFU0aAWgWR0CTrYifQKKHdX2UKGgGaAloD0MIzGJi8zHFckCUhpRSlGgVTRQBaBZHQJOtwlyBCld1fZQoaAZoCWgPQwi/nq9ZrhtvQJSGlFKUaBVNNAFoFkdAk63iDEm6XnV9lChoBmgJaA9DCBk3NdB87HFAlIaUUpRoFU0vAWgWR0CTrg1CPZIydX2UKGgGaAloD0MILGNDN3sJcUCUhpRSlGgVTSYBaBZHQJOuvYcvM8p1fZQoaAZoCWgPQwhUUiegiRhLQJSGlFKUaBVL4WgWR0CTrsweeWfLdX2UKGgGaAloD0MI9pmzPmWPcUCUhpRSlGgVTUIBaBZHQJOwjrKNhmZ1fZQoaAZoCWgPQwjXhopxfnZyQJSGlFKUaBVNBgFoFkdAk7EEF0PpZHV9lChoBmgJaA9DCEaXN4erxXFAlIaUUpRoFU1EAWgWR0CTsb55JK8MdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-sman.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6fc2fb867672d539ee73c64dc0e29fa901e4471a0c27af3d145202d61652e4fa
3
- size 147218
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a5b350711ac6ac12069f3c9311875553eeed2d71e5cadb814d5ca6493540233
3
+ size 147206
ppo-LunarLander-sman/data CHANGED
@@ -4,19 +4,19 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7fafa05160>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7fafa051f0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7fafa05280>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7fafa05310>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f7fafa053a0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f7fafa05430>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7fafa054c0>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7f7fafa05550>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7fafa055e0>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7fafa05670>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7fafa05700>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7f7fafa040f0>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
@@ -47,7 +47,7 @@
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1671605840556453047,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
@@ -56,7 +56,7 @@
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpBV7sK10i3ej3dOXN4tDS54467sQQCuQAAgD8AAIA/GswRPRRYtbpHicK2qx0GMBbl2rhACOA1AACAPwAAgD9oxIK+SE2EPycrqb3pz36+YPonviUxpDwAAAAAAAAAAGZEIb3DUTK6lDqeujQzNLZu0BW6s3mkNQAAgD8AAIA/AOOVvOHQrbrx3sO6c8rBtbRknrioceA5AACAPwAAgD8zF0W99ohfum5EwzqaQbw1OOcXuzX55LkAAIA/AACAPzMI5LxxDVS5AJ2FuoDEwLQmsEo6EkShOQAAgD8AAIA/ZvxevUjXkbp2SWk2JM9iMX+W4LpLNYq1AACAPwAAgD8AKAu8KcAUurWH57l//qu24punulrgGzYAAIA/AACAP2bFjL2e7qE/DnBAvgx1br4oBHa9WomCvQAAAAAAAAAA2mm7PVIA1LlaN6C7Htj4N1Ztzjvmn8C2AACAPwAAgD+zrMQ94X6NujjOSbvvzr4yoBQUuxpGZzoAAIA/AACAPwC1y7zqReg+2DL4uxFxQr7DJ3+8bttKPQAAAAAAAAAA5o4qPVxbZbrSPtQ6GkqdNSdeqrl+T/m5AACAPwAAgD8zSbs9ri2Dur4IxrzCPa84QmHUuk6gHLgAAIA/AAAAAAAcfDwpcGe6e0MautP5DLZLH325308xOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
@@ -69,7 +69,7 @@
69
  "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMo6R7JGpY0CUhpRSlIwBbJRN6AOMAXSUR0CQiS+M6zVudX2UKGgGaAloD0MIJ8KGp1eGY0CUhpRSlGgVTegDaBZHQJCJv/6wdKd1fZQoaAZoCWgPQwjvHMpQlehjQJSGlFKUaBVN6ANoFkdAkIpAs9SuQ3V9lChoBmgJaA9DCK5H4XoUJWNAlIaUUpRoFU3oA2gWR0CQkmYqXnhbdX2UKGgGaAloD0MIvJaQD/pCYUCUhpRSlGgVTegDaBZHQJCTB3OfNA11fZQoaAZoCWgPQwiWdmout2FiQJSGlFKUaBVN6ANoFkdAkJS/uPV/c3V9lChoBmgJaA9DCI5AvK7ftmNAlIaUUpRoFU3oA2gWR0CQnWpyp71JdX2UKGgGaAloD0MI/TOD+MDSY0CUhpRSlGgVTegDaBZHQJCe4pF1B+p1fZQoaAZoCWgPQwjfisQENV9hQJSGlFKUaBVN6ANoFkdAkJ+LWNFSbnV9lChoBmgJaA9DCB0FiIIZEmFAlIaUUpRoFU3oA2gWR0CQoSxaxHG0dX2UKGgGaAloD0MIfQVpxiJ2ZkCUhpRSlGgVTegDaBZHQJCyfB7/n4h1fZQoaAZoCWgPQwiCNjl80lJlQJSGlFKUaBVN6ANoFkdAkLtkk0JnhHV9lChoBmgJaA9DCAYujzUjCmVAlIaUUpRoFU3oA2gWR0CQvEn/1g6VdX2UKGgGaAloD0MI4PPDCOHHW0CUhpRSlGgVTegDaBZHQJC979VFQVN1fZQoaAZoCWgPQwj03hgCAMZiQJSGlFKUaBVN6ANoFkdAkL3yXdCVr3V9lChoBmgJaA9DCKGgFK1cTmJAlIaUUpRoFU3oA2gWR0CQ1yhTwUg0dX2UKGgGaAloD0MIXATG+gZMXkCUhpRSlGgVTegDaBZHQJDbNYSxqwh1fZQoaAZoCWgPQwhOKhpr/49kQJSGlFKUaBVN6ANoFkdAkNviUC7sfXV9lChoBmgJaA9DCIAqbtximFxAlIaUUpRoFU3oA2gWR0CQ3HODrZ8KdX2UKGgGaAloD0MIc0nVdhMTZECUhpRSlGgVTegDaBZHQJDnMTQE6kt1fZQoaAZoCWgPQwiRfvs68FNhQJSGlFKUaBVN6ANoFkdAkOf7WI42j3V9lChoBmgJaA9DCMoYH2YvKmJAlIaUUpRoFU3oA2gWR0CQ6jowmE5AdX2UKGgGaAloD0MIaxFRTN70YkCUhpRSlGgVTegDaBZHQJD1GrDIikh1fZQoaAZoCWgPQwiRmQtcHp5iQJSGlFKUaBVN6ANoFkdAkPbRS9/SY3V9lChoBmgJaA9DCBZNZyeDgFpAlIaUUpRoFU3oA2gWR0CQ95oBaLXMdX2UKGgGaAloD0MI7PoFu2FnWUCUhpRSlGgVTegDaBZHQJD5eObRWtF1fZQoaAZoCWgPQwgCgjl6fIVgQJSGlFKUaBVN6ANoFkdAkQswbp/wzHV9lChoBmgJaA9DCKNaRBQTJWJAlIaUUpRoFU3oA2gWR0CRE8RAbADadX2UKGgGaAloD0MIPiMRGsG8YUCUhpRSlGgVTegDaBZHQJEUlT/ACXB1fZQoaAZoCWgPQwg4ns+AetxiQJSGlFKUaBVN6ANoFkdAkRYVjd56dHV9lChoBmgJaA9DCFLuPsdHd15AlIaUUpRoFU3oA2gWR0CRFhedCmdidX2UKGgGaAloD0MIFRvzOuLfXECUhpRSlGgVTegDaBZHQJEb3WpZOi51fZQoaAZoCWgPQwhFK/cCs59iQJSGlFKUaBVN6ANoFkdAkTIfVRUFS3V9lChoBmgJaA9DCLk16bZEIFhAlIaUUpRoFU3oA2gWR0CRMq9WIXTFdX2UKGgGaAloD0MIukkMAivMX0CUhpRSlGgVTegDaBZHQJEzJH5Jsft1fZQoaAZoCWgPQwgFajF4GE9kQJSGlFKUaBVN6ANoFkdAkTwfBi1Aq3V9lChoBmgJaA9DCMzs8xjlnF9AlIaUUpRoFU3oA2gWR0CRPM5MlC1JdX2UKGgGaAloD0MIiNUfYRi8YECUhpRSlGgVTegDaBZHQJE+yyt3fQ91fZQoaAZoCWgPQwjlDTDzHaxKQJSGlFKUaBVNTgFoFkdAkUcn9R77bnV9lChoBmgJaA9DCBvXv+uzKWRAlIaUUpRoFU3oA2gWR0CRSUMMZxaQdX2UKGgGaAloD0MIdm9FYoLVYUCUhpRSlGgVTegDaBZHQJFK66g/Tsp1fZQoaAZoCWgPQwhSD9HojjtgQJSGlFKUaBVN6ANoFkdAkUub+Lm6oXV9lChoBmgJaA9DCMVx4NXyT2FAlIaUUpRoFU3oA2gWR0CRTWouPFNtdX2UKGgGaAloD0MIB+3Vx0OHZUCUhpRSlGgVTegDaBZHQJFfYYP5HmR1fZQoaAZoCWgPQwh/aydKQrxXQJSGlFKUaBVN6ANoFkdAkWiXpbD/EXV9lChoBmgJaA9DCJNTO8PU/F1AlIaUUpRoFU3oA2gWR0CRaYbHIZIhdX2UKGgGaAloD0MIuB6F61FYYkCUhpRSlGgVTegDaBZHQJFrPJRwZO11fZQoaAZoCWgPQwi/f/PixAtdQJSGlFKUaBVN6ANoFkdAkWs/CMxXXHV9lChoBmgJaA9DCGFSfHzCuGJAlIaUUpRoFU3oA2gWR0CRcYIGyHEddX2UKGgGaAloD0MIuk24V+ZyZECUhpRSlGgVTegDaBZHQJGISscQyyl1fZQoaAZoCWgPQwha9iSwuVphQJSGlFKUaBVN6ANoFkdAkYmB2St/4XV9lChoBmgJaA9DCBeARunS/ztAlIaUUpRoFU0aAWgWR0CRjnr7O3UhdX2UKGgGaAloD0MIrFj8prBYQUCUhpRSlGgVTVkBaBZHQJGTY8KXv6V1fZQoaAZoCWgPQwiPcFrwonFjQJSGlFKUaBVN6ANoFkdAkZPZZKWcBnV9lChoBmgJaA9DCCECDqFKr0FAlIaUUpRoFU1RAWgWR0CRlEkd3jdYdX2UKGgGaAloD0MIKJmc2hkHZECUhpRSlGgVTegDaBZHQJGUiSW7e2x1fZQoaAZoCWgPQwhgsBu2LVRiQJSGlFKUaBVN6ANoFkdAkZZj4pMHr3V9lChoBmgJaA9DCAltOZfirEBAlIaUUpRoFU0gAWgWR0CRmyozN2TxdX2UKGgGaAloD0MI3GW/7nRyZECUhpRSlGgVTegDaBZHQJGdSAFxGUh1fZQoaAZoCWgPQwjIXYQpytdaQJSGlFKUaBVN6ANoFkdAkZ79vCMxXXV9lChoBmgJaA9DCDY9KChFMGBAlIaUUpRoFU3oA2gWR0CRoETyJ9ApdX2UKGgGaAloD0MIHCWvzjG8YkCUhpRSlGgVTegDaBZHQJGgz2Dg62h1fZQoaAZoCWgPQwhfmiLA6bFXQJSGlFKUaBVN6ANoFkdAkaI8LORkmXV9lChoBmgJaA9DCGb0o+GUhUFAlIaUUpRoFU1AAWgWR0CRpaaZQYUGdX2UKGgGaAloD0MINLxZg/fOYECUhpRSlGgVTegDaBZHQJGw8M1CPZJ1fZQoaAZoCWgPQwgFie3ugXVkQJSGlFKUaBVN6ANoFkdAkbtaMBIWg3V9lChoBmgJaA9DCLwDPGlhVGJAlIaUUpRoFU3oA2gWR0CRwmsw+MZQdX2UKGgGaAloD0MILEgzFk0jW0CUhpRSlGgVTegDaBZHQJHZGFEiMYN1fZQoaAZoCWgPQwixNPCjGlddQJSGlFKUaBVN6ANoFkdAkd93xJ/XoXV9lChoBmgJaA9DCA0dO6jEiltAlIaUUpRoFU3oA2gWR0CR5Fp9qk/KdX2UKGgGaAloD0MI9wSJ7e4EXUCUhpRSlGgVTegDaBZHQJHkzQ1JlJ91fZQoaAZoCWgPQwhCJEOOrZxcQJSGlFKUaBVN6ANoFkdAkeU/ywwCbXV9lChoBmgJaA9DCCzWcJF7mGFAlIaUUpRoFU3oA2gWR0CR52e4Cp3pdX2UKGgGaAloD0MIj6UPXVBEY0CUhpRSlGgVTegDaBZHQJHsg4CIUJx1fZQoaAZoCWgPQwgQCHQmbb1rQJSGlFKUaBVN3QNoFkdAke57ApKBd3V9lChoBmgJaA9DCOSghJm2TFlAlIaUUpRoFU3oA2gWR0CR8YuG9HtndX2UKGgGaAloD0MIOSaL+4+3XUCUhpRSlGgVTegDaBZHQJHzO4oZydZ1fZQoaAZoCWgPQwjElEiiFzhhQJSGlFKUaBVN6ANoFkdAkfQIBvJiiXV9lChoBmgJaA9DCJYkz/V91VpAlIaUUpRoFU3oA2gWR0CR9eHNX5nEdX2UKGgGaAloD0MINzgR/dq/ZUCUhpRSlGgVTegDaBZHQJH6OKuSwGJ1fZQoaAZoCWgPQwhPH4E//DtiQJSGlFKUaBVN6ANoFkdAkgTFjd56dHV9lChoBmgJaA9DCMpUwaikoWRAlIaUUpRoFU3oA2gWR0CSDeVENOM3dX2UKGgGaAloD0MI+U7MejGhZECUhpRSlGgVTegDaBZHQJIUKLYPGyZ1fZQoaAZoCWgPQwjdQlciULFeQJSGlFKUaBVN6ANoFkdAkhgKjzqbB3V9lChoBmgJaA9DCM9nQL2ZDGZAlIaUUpRoFU3oA2gWR0CSMM9b5dnkdX2UKGgGaAloD0MIpS4Zx0j+YUCUhpRSlGgVTegDaBZHQJI1hrZamoB1fZQoaAZoCWgPQwjZz2IpkitaQJSGlFKUaBVN6ANoFkdAkjX7PldTpHV9lChoBmgJaA9DCHL9uz7zeWFAlIaUUpRoFU3oA2gWR0CSNnIMjNY9dX2UKGgGaAloD0MIWwpI+59IY0CUhpRSlGgVTegDaBZHQJI4wokRjBl1fZQoaAZoCWgPQwjuQQjIF/tgQJSGlFKUaBVN6ANoFkdAkj3++23KCHV9lChoBmgJaA9DCNdtUPstMmNAlIaUUpRoFU3oA2gWR0CSP4HXVbzLdX2UKGgGaAloD0MIavgW1o2NWkCUhpRSlGgVTegDaBZHQJJB5F8XvYx1fZQoaAZoCWgPQwhdbcX+MqdiQJSGlFKUaBVN6ANoFkdAkkM/3vhIfHV9lChoBmgJaA9DCKGA7WDEIF5AlIaUUpRoFU3oA2gWR0CSQ9akRBeHdX2UKGgGaAloD0MIU5PgDemPYUCUhpRSlGgVTegDaBZHQJJFUp2ECeV1fZQoaAZoCWgPQwgz+WabmwxhQJSGlFKUaBVN6ANoFkdAkki3pGFzuHV9lChoBmgJaA9DCLag98aQPGFAlIaUUpRoFU3oA2gWR0CSU+PoV2zOdX2UKGgGaAloD0MInMJKBZUMYUCUhpRSlGgVTegDaBZHQJJeEa72+PB1fZQoaAZoCWgPQwgep+hILklfQJSGlFKUaBVN6ANoFkdAkmSDdP+GXXV9lChoBmgJaA9DCLSwpx1+lmBAlIaUUpRoFU3oA2gWR0CSaGu3trsTdWUu"
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3962f7c310>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3962f7c3a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3962f7c430>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3962f7c4c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f3962f7c550>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f3962f7c5e0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3962f7c670>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f3962f7c700>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3962f7c790>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3962f7c820>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3962f7c8b0>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f3962f767e0>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
 
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1671657901567711166,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
 
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNLJ71XHAk/QtCavT4lqL7j45y9c33euwAAAAAAAAAAzUi+uzioGz9Jpiq9x1qVvk5dnTwTyRu+AAAAAAAAAABmkQa+dbKpPuKigj20OnW+oGj1vGqJmz0AAAAAAAAAAGaEND26zY0+Wip0u3tkir4Dwxm9osqBvQAAAAAAAAAARsRrvtTd9rzd0dm7yZVdO2sEXT5z19I6AACAPwAAgD8zEgS+cfeqPpuNlz1O8xW+EmZ5vILvYL0AAAAAAAAAAKbgij2S7ho+1o/hvUaPd76MBVO9u9mhPQAAAAAAAAAAM2qMPoeZaD9DvDC+RmqXvi/DHD7SBdC9AAAAAAAAAAAz1Ca9HP+QPwMs0r3LTvW+Zh29vLul67wAAAAAAAAAAKZBv702C4I/g/ixvT+c8r4OHCm8VwERvQAAAAAAAAAATXdkvUjzpboINlq7FIT8tQG2z7rtImE1AACAPwAAgD8zC+M74726P/t1gz0aWL49fhqAu33uaDwAAAAAAAAAAABOYLzX82O5nKKSutUYzjSiuxw6NU6rOQAAgD8AAIA/sxvePTEMlz6+3Gi+WWaTvvjnmjwx9kO9AAAAAAAAAACNCI69e5aXutg+bDOyBBQr90gqOoglzLMAAIA/AACAP61Ra75g+JY+3LayPp6QHb4vgME8areZPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
 
69
  "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/5JUphjQckCUhpRSlIwBbJRNCwGMAXSUR0CTWJc9nscAdX2UKGgGaAloD0MIvALRkzJib0CUhpRSlGgVTR4BaBZHQJNZrVQQ+U11fZQoaAZoCWgPQwiLijid5N9xQJSGlFKUaBVNDgFoFkdAk1nAhKUVz3V9lChoBmgJaA9DCHtq9dVVa3FAlIaUUpRoFUv5aBZHQJNabIsAeaN1fZQoaAZoCWgPQwjknq7u2D9vQJSGlFKUaBVNHwFoFkdAk1r4znA6+3V9lChoBmgJaA9DCF0yjpFsqW5AlIaUUpRoFU0gAWgWR0CTWwBBiTdMdX2UKGgGaAloD0MIdVd2weCebUCUhpRSlGgVTSgBaBZHQJNbs+t8uz11fZQoaAZoCWgPQwhBnfLohqJwQJSGlFKUaBVNFQFoFkdAk1xmZiNKiHV9lChoBmgJaA9DCOjaF9CLd25AlIaUUpRoFU0lAWgWR0CTXZC+10DEdX2UKGgGaAloD0MIBoTWw9excECUhpRSlGgVTS4BaBZHQJNdnriVB2R1fZQoaAZoCWgPQwjxgR3/hQZyQJSGlFKUaBVNMQFoFkdAk12lkMCtBHV9lChoBmgJaA9DCAq9/iS+Fm1AlIaUUpRoFU0UAWgWR0CTXbV7hNucdX2UKGgGaAloD0MIiUFg5RAFc0CUhpRSlGgVTUwBaBZHQJNeJXeWOZN1fZQoaAZoCWgPQwhZ3H9kOnxxQJSGlFKUaBVNBgFoFkdAk16MiW3Sa3V9lChoBmgJaA9DCCP3dHVHjHBAlIaUUpRoFU0iAWgWR0CTYDsXizcAdX2UKGgGaAloD0MIKChFK/eTcECUhpRSlGgVTWIBaBZHQJNjQ/3WWhR1fZQoaAZoCWgPQwhB8zl3O1ZwQJSGlFKUaBVNNgFoFkdAk2P7lzU7S3V9lChoBmgJaA9DCHhEhepm+HBAlIaUUpRoFU09AWgWR0CTZFx6OYICdX2UKGgGaAloD0MIidFzC138cECUhpRSlGgVTR4BaBZHQJNkdW3jMmp1fZQoaAZoCWgPQwh4YtaLofxvQJSGlFKUaBVNKAFoFkdAk2TivLX+VHV9lChoBmgJaA9DCNLijGGOAXFAlIaUUpRoFU0bAWgWR0CTZTRekYXPdX2UKGgGaAloD0MIea2E7pJAS0CUhpRSlGgVS81oFkdAk2VHb/Ot4nV9lChoBmgJaA9DCJOKxtrfCG5AlIaUUpRoFU17AWgWR0CTZZBYmsvJdX2UKGgGaAloD0MIaOp1i8AocECUhpRSlGgVS/poFkdAk2YRCMPz4HV9lChoBmgJaA9DCKMjufxHTXJAlIaUUpRoFU0fAWgWR0CTZgtRvWH2dX2UKGgGaAloD0MIdR2qKcmockCUhpRSlGgVTQ0BaBZHQJNmrIBBAwB1fZQoaAZoCWgPQwi7YduizF5vQJSGlFKUaBVNFwFoFkdAk2cLcwg1WXV9lChoBmgJaA9DCNGRXP6DvXFAlIaUUpRoFU0oAWgWR0CTZ19Ujs2OdX2UKGgGaAloD0MIegCL/Lo9ckCUhpRSlGgVTSwBaBZHQJNom7z06HV1fZQoaAZoCWgPQwicGJKTiTpvQJSGlFKUaBVNMAFoFkdAk2qIWYWtVHV9lChoBmgJaA9DCGTmApfH5XBAlIaUUpRoFU0WAWgWR0CTbaayKNyYdX2UKGgGaAloD0MIZTkJpS+LckCUhpRSlGgVTRoBaBZHQJNtt9RaX8h1fZQoaAZoCWgPQwg+kpIeRspzQJSGlFKUaBVNBgFoFkdAk23HC9AX23V9lChoBmgJaA9DCH9qvHQT+nFAlIaUUpRoFU01AWgWR0CTbcg0CRwIdX2UKGgGaAloD0MIJoqQup1NTkCUhpRSlGgVS99oFkdAk27ryxzJZHV9lChoBmgJaA9DCD5CzZAqtW9AlIaUUpRoFU0iAWgWR0CTbyn7pFCtdX2UKGgGaAloD0MIy/Pg7qzpbkCUhpRSlGgVTQEBaBZHQJNvRpKzzEt1fZQoaAZoCWgPQwhoA7AB0VVxQJSGlFKUaBVNIgFoFkdAk2+5t78ejnV9lChoBmgJaA9DCBYYsrqVQ3FAlIaUUpRoFU0qAWgWR0CTcALwnYxtdX2UKGgGaAloD0MIu5hmutdDcECUhpRSlGgVTUMBaBZHQJNwCneizs11fZQoaAZoCWgPQwjMJyuG62VyQJSGlFKUaBVL9GgWR0CTcRvtdAxBdX2UKGgGaAloD0MIyatzDAgFcECUhpRSlGgVTXYBaBZHQJNxYr9VFQV1fZQoaAZoCWgPQwgo9PqT+H1sQJSGlFKUaBVNVwFoFkdAk3J/QBxPwnV9lChoBmgJaA9DCNGy7h9LjHBAlIaUUpRoFU08AWgWR0CTdfAZsKsudX2UKGgGaAloD0MIDycwndZkbECUhpRSlGgVTQ0BaBZHQJN3z3Hq/ud1fZQoaAZoCWgPQwglBKvqpYVxQJSGlFKUaBVNFQFoFkdAk3gdW2gFo3V9lChoBmgJaA9DCAN3oE65ZHJAlIaUUpRoFUvsaBZHQJN4Qrxy4nZ1fZQoaAZoCWgPQwhYN94d2YRxQJSGlFKUaBVNIAFoFkdAk3jBWo3rEHV9lChoBmgJaA9DCF3dsdgmVXJAlIaUUpRoFU0ZAWgWR0CTedLgGbCrdX2UKGgGaAloD0MIHy+kw4PHcECUhpRSlGgVTQcBaBZHQJN6AKneizt1fZQoaAZoCWgPQwi9VGzMq/txQJSGlFKUaBVNTAFoFkdAk3qZhKDkEXV9lChoBmgJaA9DCFr0TgUcZXFAlIaUUpRoFU0fAWgWR0CTjyMsYl6adX2UKGgGaAloD0MInDV4XxUyc0CUhpRSlGgVTQYBaBZHQJOProSteUp1fZQoaAZoCWgPQwj5S4v6pOtwQJSGlFKUaBVNPgFoFkdAk5ArtiQT23V9lChoBmgJaA9DCGJodXKGcXBAlIaUUpRoFU0nAWgWR0CTkInTRYzSdX2UKGgGaAloD0MIxLXaw97tcUCUhpRSlGgVTQ0BaBZHQJORNBZ6lch1fZQoaAZoCWgPQwih2XVvRZFSQJSGlFKUaBVN6ANoFkdAk5F6ZML4OHV9lChoBmgJaA9DCH6nyYy3QXBAlIaUUpRoFU0XAWgWR0CTlHUEgW8AdX2UKGgGaAloD0MIpn9JKtMEbUCUhpRSlGgVTfsBaBZHQJOV1hTfixV1fZQoaAZoCWgPQwhRLSKKCXFxQJSGlFKUaBVNJAFoFkdAk5ZdSIgvDnV9lChoBmgJaA9DCOIhjJ9GSW1AlIaUUpRoFU05AWgWR0CTl2tvXK8tdX2UKGgGaAloD0MI3UJXItAXbECUhpRSlGgVTSABaBZHQJOYFhx5s0p1fZQoaAZoCWgPQwg9RnnmJYVxQJSGlFKUaBVNEgFoFkdAk5gmBBiTdXV9lChoBmgJaA9DCDi7tUyGxXBAlIaUUpRoFU1KAWgWR0CTmX/mT1TSdX2UKGgGaAloD0MItOVciitcbUCUhpRSlGgVTSwBaBZHQJOZvl5nlGR1fZQoaAZoCWgPQwiAuKtXEWdyQJSGlFKUaBVNfwFoFkdAk5pwy2x6fXV9lChoBmgJaA9DCDp15bN8LHFAlIaUUpRoFU0nAWgWR0CTmpiz9jwydX2UKGgGaAloD0MIKSDtfwBCckCUhpRSlGgVTT8BaBZHQJOa6x4Y77t1fZQoaAZoCWgPQwgWw9UBkBNjQJSGlFKUaBVN6ANoFkdAk5vIx1xKhHV9lChoBmgJaA9DCG9kHvkDHXJAlIaUUpRoFU3eAWgWR0CTnXNzbN8mdX2UKGgGaAloD0MIjuvf9RkRcECUhpRSlGgVTVwBaBZHQJOdg9fTkQx1fZQoaAZoCWgPQwjuXYO+NBxwQJSGlFKUaBVNeQFoFkdAk57HJkoWpXV9lChoBmgJaA9DCPfN/dVjzXBAlIaUUpRoFU0gAWgWR0CTntqqfe1sdX2UKGgGaAloD0MIhj3t8Nf9b0CUhpRSlGgVTSYBaBZHQJOgxiUgSvl1fZQoaAZoCWgPQwiSJAhXgCxwQJSGlFKUaBVNGQFoFkdAk6FIF3Y+S3V9lChoBmgJaA9DCBsPttjt6WtAlIaUUpRoFU0CAWgWR0CTomfT1CgLdX2UKGgGaAloD0MIcR3jios8cECUhpRSlGgVS/5oFkdAk6KHVCojwHV9lChoBmgJaA9DCCsU6X7OXnBAlIaUUpRoFU0/AWgWR0CToy4O+ZgHdX2UKGgGaAloD0MIcF8Hzhn0ckCUhpRSlGgVTUcBaBZHQJOjiYkVvdd1fZQoaAZoCWgPQwjABkSIqxRwQJSGlFKUaBVNiwFoFkdAk6PFnZkCm3V9lChoBmgJaA9DCB767laWJ3JAlIaUUpRoFU0ZAWgWR0CTpCLXcxj8dX2UKGgGaAloD0MI8+hGWBTKcECUhpRSlGgVTSABaBZHQJOkdwsGxD91fZQoaAZoCWgPQwhLPQtC+RVxQJSGlFKUaBVNMgFoFkdAk6VPCIk7fnV9lChoBmgJaA9DCKUyxRyEB25AlIaUUpRoFU0NAWgWR0CTpm/vOQhfdX2UKGgGaAloD0MIcOmY88y5ckCUhpRSlGgVS+1oFkdAk6a3EIgNgHV9lChoBmgJaA9DCOQwmL9CrW9AlIaUUpRoFU02AWgWR0CTp8drO7g9dX2UKGgGaAloD0MIxTwraQWfcECUhpRSlGgVTXYBaBZHQJOoWE/Spit1fZQoaAZoCWgPQwig/rPmx9lsQJSGlFKUaBVNLgFoFkdAk6jMWfseGXV9lChoBmgJaA9DCDj1geQdU3FAlIaUUpRoFU0XAWgWR0CTq/WCmMwUdX2UKGgGaAloD0MIqUpbXKPVckCUhpRSlGgVTUQBaBZHQJOsU7CBPKx1fZQoaAZoCWgPQwjIQnQInH9uQJSGlFKUaBVNPQFoFkdAk61bDMvAXXV9lChoBmgJaA9DCIm1+BSA0W9AlIaUUpRoFU0aAWgWR0CTrYifQKKHdX2UKGgGaAloD0MIzGJi8zHFckCUhpRSlGgVTRQBaBZHQJOtwlyBCld1fZQoaAZoCWgPQwi/nq9ZrhtvQJSGlFKUaBVNNAFoFkdAk63iDEm6XnV9lChoBmgJaA9DCBk3NdB87HFAlIaUUpRoFU0vAWgWR0CTrg1CPZIydX2UKGgGaAloD0MILGNDN3sJcUCUhpRSlGgVTSYBaBZHQJOuvYcvM8p1fZQoaAZoCWgPQwhUUiegiRhLQJSGlFKUaBVL4WgWR0CTrsweeWfLdX2UKGgGaAloD0MI9pmzPmWPcUCUhpRSlGgVTUIBaBZHQJOwjrKNhmZ1fZQoaAZoCWgPQwjXhopxfnZyQJSGlFKUaBVNBgFoFkdAk7EEF0PpZHV9lChoBmgJaA9DCEaXN4erxXFAlIaUUpRoFU1EAWgWR0CTsb55JK8MdWUu"
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
ppo-LunarLander-sman/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c24c17d02643ba796a0b9b81f809a5d27063b011f9967f866177c9fb4b195127
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a56c0e93fcdf2ddff7c24ac8b5eb12d490dd5a852884a4e4dfa9f713ba7ded5
3
  size 87929
ppo-LunarLander-sman/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f262513ae2e8c20a6edba5f6cd3f61100907d4cb9134d0d1253eb59521423714
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e2162d0190c9d42c9ab97100ef7db3f3168dde7d76b4c5fddb6a2c274572a41
3
  size 43201
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 242.4325088849061, "std_reward": 18.541665165123753, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-21T07:22:09.941690"}
 
1
+ {"mean_reward": 258.25033134873445, "std_reward": 17.088496610871022, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-21T21:50:12.064314"}