|
--- |
|
license: mit |
|
--- |
|
|
|
Model convert from [https://github.com/KichangKim/DeepDanbooru](https://github.com/KichangKim/DeepDanbooru) |
|
|
|
Usage: |
|
|
|
```python |
|
import cv2 |
|
import numpy as np |
|
import onnxruntime as rt |
|
from huggingface_hub import hf_hub_download |
|
|
|
tagger_model_path = hf_hub_download(repo_id="skytnt/deepdanbooru_onnx", filename="deepdanbooru.onnx") |
|
|
|
tagger_model = rt.InferenceSession(tagger_model_path, providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) |
|
tagger_model_meta = tagger_model.get_modelmeta().custom_metadata_map |
|
tagger_tags = eval(tagger_model_meta['tags']) |
|
|
|
def tagger_predict(image, score_threshold): |
|
h, w = image.shape[:2] |
|
r = min(512 / w, 512 / h) |
|
h, w = int(h * r), int(w * r) |
|
image = cv2.resize(image, (w, h)) |
|
pdx = 512 - w |
|
pdy = 512 - h |
|
img_new = np.full([512, 512, 3], 1, dtype=np.float32) |
|
img_new[pdy // 2:pdy // 2 + h, pdx // 2:pdx // 2 + w] = image |
|
image = img_new[np.newaxis, :] |
|
probs = tagger_model.run(None, {"input_1": image})[0][0] |
|
probs = probs.astype(np.float32) |
|
res = [] |
|
for prob, label in zip(probs.tolist(), tagger_tags): |
|
if prob < score_threshold: |
|
continue |
|
res.append(label) |
|
return res |
|
|
|
img = cv2.imread("test.jpg") |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
img = img.astype(np.float32) / 255 |
|
tags = tagger_predict(img, 0.5) |
|
print(tags) |
|
``` |
|
|