conditional-detr-resnet-50_til-2023-cv-9

This model is a fine-tuned version of microsoft/conditional-detr-resnet-50 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2502
  • Loss Ce: 0.0010
  • Loss Bbox: 0.0160
  • Loss Giou: 0.0842
  • Cardinality Error: 2.1237
  • Map: 0.8063
  • Map 50: 0.9901
  • Map 75: 0.9609
  • Map Small: 0.8063
  • Map Medium: -1.0
  • Map Large: -1.0
  • Mar 1: 0.4097
  • Mar 10: 0.8555
  • Mar 100: 0.8555
  • Mar Small: 0.8555
  • Mar Medium: -1.0
  • Mar Large: -1.0
  • Map Per Class: -1.0
  • Mar 100 Per Class: -1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Loss Ce Loss Bbox Loss Giou Cardinality Error Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Per Class Mar 100 Per Class
0.4695 1.0 708 0.4327 0.0120 0.0256 0.1404 2.1237 0.7356 0.9796 0.9229 0.7356 -1.0 -1.0 0.3810 0.7910 0.7910 0.7910 -1.0 -1.0 -1.0 -1.0
0.2915 2.0 1416 0.3432 0.0056 0.0217 0.1118 2.1237 0.7640 0.9892 0.9391 0.7640 -1.0 -1.0 0.3900 0.8128 0.8128 0.8128 -1.0 -1.0 -1.0 -1.0
0.2713 3.0 2124 0.3150 0.0063 0.0194 0.1026 2.1237 0.7819 0.9894 0.9494 0.7819 -1.0 -1.0 0.3977 0.8274 0.8274 0.8274 -1.0 -1.0 -1.0 -1.0
0.2583 4.0 2832 0.2754 0.0026 0.0174 0.0915 2.1237 0.7931 0.9898 0.9515 0.7931 -1.0 -1.0 0.4026 0.8387 0.8387 0.8387 -1.0 -1.0 -1.0 -1.0
0.2264 5.0 3540 0.2768 0.0019 0.0178 0.0921 2.1237 0.8011 0.9899 0.9623 0.8011 -1.0 -1.0 0.4057 0.8452 0.8452 0.8452 -1.0 -1.0 -1.0 -1.0
0.2841 6.0 4248 0.3362 0.0049 0.0207 0.1115 2.1237 0.7973 0.9900 0.9614 0.7973 -1.0 -1.0 0.4043 0.8434 0.8434 0.8434 -1.0 -1.0 -1.0 -1.0
0.2929 7.0 4956 0.3310 0.0078 0.0203 0.1071 2.1237 0.7986 0.9899 0.9616 0.7986 -1.0 -1.0 0.4053 0.8445 0.8445 0.8445 -1.0 -1.0 -1.0 -1.0
0.2405 8.0 5664 0.2681 0.0017 0.0168 0.0904 2.1237 0.8018 0.9900 0.9619 0.8018 -1.0 -1.0 0.4067 0.8481 0.8481 0.8481 -1.0 -1.0 -1.0 -1.0
0.1851 9.0 6372 0.2680 0.0019 0.0168 0.0901 2.1237 0.8050 0.9900 0.9622 0.8050 -1.0 -1.0 0.4081 0.8511 0.8511 0.8511 -1.0 -1.0 -1.0 -1.0
0.1842 10.0 7080 0.2553 0.0013 0.0163 0.0856 2.1237 0.8074 0.9900 0.9627 0.8074 -1.0 -1.0 0.4095 0.8544 0.8544 0.8544 -1.0 -1.0 -1.0 -1.0
0.3201 11.0 7788 0.3556 0.0034 0.0226 0.1179 2.1237 0.8040 0.9900 0.9617 0.8040 -1.0 -1.0 0.4080 0.8511 0.8511 0.8511 -1.0 -1.0 -1.0 -1.0
0.266 12.0 8496 0.3296 0.0021 0.0191 0.1151 2.1237 0.7996 0.9900 0.9600 0.7996 -1.0 -1.0 0.4069 0.8489 0.8489 0.8489 -1.0 -1.0 -1.0 -1.0
0.2086 13.0 9204 0.2753 0.0016 0.0178 0.0916 2.1237 0.8007 0.9900 0.9603 0.8007 -1.0 -1.0 0.4076 0.8506 0.8506 0.8506 -1.0 -1.0 -1.0 -1.0
0.1853 14.0 9912 0.2452 0.0009 0.0156 0.0827 2.1237 0.8037 0.9900 0.9606 0.8037 -1.0 -1.0 0.4088 0.8533 0.8533 0.8533 -1.0 -1.0 -1.0 -1.0
0.1588 15.0 10620 0.2502 0.0010 0.0160 0.0842 2.1237 0.8063 0.9901 0.9609 0.8063 -1.0 -1.0 0.4097 0.8555 0.8555 0.8555 -1.0 -1.0 -1.0 -1.0

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.13.3
Downloads last month
5
Safetensors
Model size
43.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.