See axolotl config
axolotl version: 0.5.2
base_model: skymizer/mistral-7B-v0.1-sft-slim-orca-sonnet-3.5-v4
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
tokenizer_use_fast: false
resize_token_embeddings_to_32x: false
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: false
liger_layer_norm: true
liger_fused_linear_cross_entropy: true
flash_attention: true
xformers_attention:
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: chatml
datasets:
- path: skymizer/Sonnet3.5-SlimOrcaDedupCleaned-train
type: chat_template
field_messages: messages
test_datasets:
- path: skymizer/Sonnet3.5-SlimOrcaDedupCleaned-test
type: chat_template
field_messages: messages
split: train
hf_use_auth_token: true
dataset_prepared_path: pretokenized/slim-orca
output_dir: ./exp_output_artifacts
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
# eval_causal_lm_metrics: ["perplexity"]
wandb_project: "axolotl_mistral_sft"
wandb_entity:
wandb_watch:
wandb_name: "mistral-7B-v0.1-sft-slim-orca-sonnet-3.5-v4-q-sparse-v5-wo-liger"
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 16
eval_batch_size: 1
num_epochs: 3
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.000007
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.95
adam_eps: 0.000001
max_grad_norm: 1.0
train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false
hub_model_id: "skymizer/mistral-7B-v0.1-sft-slim-orca-sonnet-3.5-v4-q-sparse-v5-wo-liger"
save_strategy: "steps"
save_steps: 50
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
warmup_ratio: 0.03
eval_steps: 50
eval_table_size:
eval_max_new_tokens: 2048
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
fsdp:
fsdp_config:
seed: 42
mistral-7B-v0.1-sft-slim-orca-sonnet-3.5-v4-q-sparse-v5-wo-liger
This model is a fine-tuned version of skymizer/mistral-7B-v0.1-sft-slim-orca-sonnet-3.5-v4 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.5972
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-06
- train_batch_size: 16
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 35
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
11.5988 | 0.0026 | 1 | 11.6153 |
4.7233 | 0.1277 | 50 | 4.6615 |
4.0447 | 0.2554 | 100 | 3.9656 |
3.6903 | 0.3831 | 150 | 3.6246 |
3.505 | 0.5109 | 200 | 3.4634 |
3.3406 | 0.6386 | 250 | 3.3183 |
3.3172 | 0.7663 | 300 | 3.2232 |
3.2418 | 0.8940 | 350 | 3.1616 |
3.0529 | 1.0217 | 400 | 3.0702 |
3.0108 | 1.1494 | 450 | 3.0005 |
2.9366 | 1.2771 | 500 | 2.9380 |
2.899 | 1.4049 | 550 | 2.8845 |
2.8523 | 1.5326 | 600 | 2.8282 |
2.8488 | 1.6603 | 650 | 2.7839 |
2.7273 | 1.7880 | 700 | 2.7394 |
2.7023 | 1.9157 | 750 | 2.7037 |
2.556 | 2.0434 | 800 | 2.6756 |
2.5533 | 2.1711 | 850 | 2.6561 |
2.5437 | 2.2989 | 900 | 2.6369 |
2.5571 | 2.4266 | 950 | 2.6229 |
2.5145 | 2.5543 | 1000 | 2.6114 |
2.5137 | 2.6820 | 1050 | 2.6032 |
2.4363 | 2.8097 | 1100 | 2.5989 |
2.5285 | 2.9374 | 1150 | 2.5972 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 36
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.