skaliy's picture
Update README.md
d6e2545
|
raw
history blame
8.35 kB
metadata
language:
  - en
pipeline_tag: image-segmentation
tags:
  - medical
library_name: fastMONAI

Endometrial cancer segmentation

This repository contains weights and exported learner (encapsulates both the model architecture and its trained parameters) for a deep learning model designed to automate the segmentation of endometrial cancer on MR images. Our VIBE model utilizes a Residual U-Net architecture, trained on data derived from the study Automated segmentation of endometrial cancer on MR images using deep learning. The primary objective of this repository is to reproduce the results reported in the study. In addition, we have looked at improving the segmentation performance using multi-sequence MR images (T2w, VIBE, and ADC) as reported in the study Automatic segmentation of uterine endometrial cancer on multi-sequence MRI using a convolutional neural network.

Requirements

Last checked and validated with fastMONAI version 0.3.9. Please ensure that you have the correct version of fastMONAI installed to guarantee the correct operation of the model.

Usage

The source code for training the model and running inference on your own data is available at: https://github.com/MMIV-ML/fastMONAI/tree/master/research/endometrial_cancer. Test our model live with the Gradio app for VIBE on Hugging Face Spaces.

Results for VIBE

The box plot of the predictions on the validation set:

The results from the validation set are also presented in the table below:

subject_id tumor_vol inter_rater r1_ml r2_ml n_components
0 29 4.16 0.201835 0.806382 0.00623053 3
1 32 8 0.684142 0.293306 0.209449 4
2 36 19.06 0.92875 0.793055 0.784799 2
3 47 11.01 0.944209 0.900945 0.898409 2
4 50 6.26 0.722867 0.614357 0.624832 1
5 65 13.09 0.930613 0.879279 0.850546 2
6 67 3.71 0.943498 0.887189 0.878163 2
7 75 7.16 0.263539 0.774237 0.266619 2
8 86 7.04 0.842577 0.821208 0.798148 1
9 135 8.1 0.839964 0.758176 0.680348 2
10 140 19.78 0.895506 0.936177 0.874019 4
11 164 16.98 0.905008 0.923559 0.887268 1
12 246 6.59 0.899448 0.895311 0.860322 3
13 255 36.22 0.955784 0.927517 0.921816 6
14 343 0.69 0.528261 0.840237 0.600751 4
15 349 2.96 0.912664 0.828181 0.778983 1
16 367 1.02 0.0734848 0.391737 0.118035 1
17 370 10.82 0.953443 0.917094 0.908893 1
18 371 3.83 0.859781 0.684751 0.618114 1
19 375 11.67 0.911141 0.921079 0.91056 4
20 377 4.37 0.782994 0.712791 0.680165 1
21 381 7.63 0.89199 0.246428 0.238641 1
22 385 2.67 0.803215 0.641916 0.60169 1
23 395 0.68 0.770738 0.198273 0.236343 5
24 397 5.94 0.904544 0.882265 0.874036 3
25 409 11.86 0.944934 0.900727 0.900767 1
26 411 5.98 0.949977 0.933271 0.929499 1
27 425 0.91 0.802867 0.589069 0.545761 1
28 434 94.42 0.894601 0.590408 0.580585 1
29 531 22.08 0.89225 0.555066 0.505109 1
30 540 8.35 0.923702 0.855009 0.840958 1

Median DSC: 0.8946, 0.8212, 0.779

Results for multi-sequence (T2, VIBE, and ADC)

The box plot of the predictions on the validation set:

The results from the validation set are also presented in the table below:

subject_id tumor_vol inter_rater r1_ml r2_ml n_components
0 29 4.16 0.201835 0.859937 0.148586 4
1 32 8 0.684142 0.662779 0.515479 10
2 36 19.06 0.92875 0.902343 0.888306 1
3 47 11.01 0.944209 0.907344 0.907 3
4 50 6.26 0.722867 0.581594 0.540991 5
5 65 13.09 0.930613 0.889782 0.862255 4
6 67 3.71 0.943498 0.851658 0.842331 2
7 75 7.16 0.263539 0.750551 0.205457 2
8 86 7.04 0.842577 0.87216 0.81374 1
9 135 8.1 0.839964 0.80436 0.747164 1
10 140 19.78 0.895506 0.907457 0.852548 1
11 164 16.98 0.905008 0.92533 0.893135 2
12 246 6.59 0.899448 0.906569 0.852195 5
13 255 36.22 0.955784 0.924517 0.927624 2
14 343 0.69 0.528261 0.868251 0.457711 3
15 349 2.96 0.912664 0.85214 0.819898 1
16 367 1.02 0.0734848 0.383455 0.0891463 3
17 370 10.82 0.953443 0.916154 0.911768 2
18 371 3.83 0.859781 0.593136 0.565848 8
19 375 11.67 0.911141 0.898501 0.910147 3
20 377 4.37 0.782994 0.713798 0.646684 3
21 381 7.63 0.89199 0.4375 0.430847 1
22 385 2.67 0.803215 0.688608 0.624595 1
23 395 0.68 0.770738 0.385992 0.43154 2
24 397 5.94 0.904544 0.868022 0.850653 6
25 409 11.86 0.944934 0.83407 0.833206 5
26 411 5.98 0.949977 0.867137 0.866112 1
27 425 0.91 0.802867 0.557732 0.475499 3
28 434 94.42 0.894601 0.618916 0.605596 6
29 531 22.08 0.89225 0.349648 0.319533 1
30 540 8.35 0.923702 0.890343 0.88052 1

Median DSC: 0.8946, 0.8521, 0.8137

Support and Contribution

For any issues related to the model or the source code, please open an issue in the corresponding GitHub repository. Contributions to the code or the model are welcome and should be proposed through a pull request.