sjrhuschlee's picture
Update README.md
f451ebc
|
raw
history blame
2.84 kB
---
license: mit
datasets:
- squad_v2
- squad
language:
- en
library_name: transformers
tags:
- question-answering
- squad
- squad_v2
- t5
---
# flan-t5-large for Extractive QA
This is the [flan-t5-large](https://huggingface.co/google/flan-t5-large) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Extractive Question Answering.
This model was trained using LoRA available through the [PEFT library](https://github.com/huggingface/peft).
NOTE: The <cls> token must be manually added to the beginning of the question for this model to work properly. It uses the <cls> token to be able to make "no answer" predictions. The t5 tokenizer does not automatically add this special token which is why it is added manually.
## Overview
**Language model:** flan-t5-large
**Language:** English
**Downstream-task:** Extractive QA
**Training data:** SQuAD 2.0
**Eval data:** SQuAD 2.0
**Infrastructure**: 1x NVIDIA 3070
## Model Usage
### Using Transformers
This uses the merged weights (base model weights + LoRA weights) to allow for simple use in Transformers pipelines. It has the same performance as using the weights separately when using the PEFT library.
```python
import torch
from transformers import(
AutoModelForQuestionAnswering,
AutoTokenizer,
pipeline
)
model_name = "sjrhuschlee/flan-t5-large-squad2"
# a) Using pipelines
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
qa_input = {
'question': f'{nlp.tokenizer.cls_token}Where do I live?', # '<cls>Where do I live?'
'context': 'My name is Sarah and I live in London'
}
res = nlp(qa_input)
# {'score': 0.984, 'start': 30, 'end': 37, 'answer': ' London'}
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
question = f'{tokenizer.cls_token}Where do I live?' # '<cls>Where do I live?'
context = 'My name is Sarah and I live in London'
encoding = tokenizer(question, context, return_tensors="pt")
start_scores, end_scores = model(
encoding["input_ids"],
attention_mask=encoding["attention_mask"],
return_dict=False
)
all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0].tolist())
answer_tokens = all_tokens[torch.argmax(start_scores):torch.argmax(end_scores) + 1]
answer = tokenizer.decode(tokenizer.convert_tokens_to_ids(answer_tokens))
# 'London'
```
### Using with Peft
**NOTE**: This requires code in the PR https://github.com/huggingface/peft/pull/473 for the PEFT library.
```python
#!pip install peft
from peft import LoraConfig, PeftModelForQuestionAnswering
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
model_name = "sjrhuschlee/flan-t5-large-squad2"
```