license: mit
datasets:
- squad_v2
- squad
language:
- en
library_name: transformers
tags:
- question-answering
- squad
- squad_v2
- t5
- lora
- peft
model-index:
- name: sjrhuschlee/flan-t5-large-squad2
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: squad_v2
type: squad_v2
config: squad_v2
split: validation
metrics:
- type: exact_match
value: 86.785
name: Exact Match
- type: f1
value: 89.537
name: F1
- task:
type: question-answering
name: Question Answering
dataset:
name: squad
type: squad
config: plain_text
split: validation
metrics:
- type: exact_match
value: 85.998
name: Exact Match
- type: f1
value: 91.296
name: F1
- task:
type: question-answering
name: Question Answering
dataset:
name: adversarial_qa
type: adversarial_qa
config: adversarialQA
split: validation
metrics:
- type: exact_match
value: 35.767
name: Exact Match
- type: f1
value: 45.565
name: F1
- task:
type: question-answering
name: Question Answering
dataset:
name: squad_adversarial
type: squad_adversarial
config: AddOneSent
split: validation
metrics:
- type: exact_match
value: 75.322
name: Exact Match
- type: f1
value: 79.327
name: F1
flan-t5-large for Extractive QA
This is the flan-t5-large model, fine-tuned using the SQuAD2.0 dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Extractive Question Answering.
This model was trained using LoRA available through the PEFT library.
NOTE: The token must be manually added to the beginning of the question for this model to work properly. It uses the token to be able to make "no answer" predictions. The t5 tokenizer does not automatically add this special token which is why it is added manually.
Overview
Language model: flan-t5-large
Language: English
Downstream-task: Extractive QA
Training data: SQuAD 2.0
Eval data: SQuAD 2.0
Infrastructure: 1x NVIDIA 3070
Model Usage
Using Transformers
This uses the merged weights (base model weights + LoRA weights) to allow for simple use in Transformers pipelines. It has the same performance as using the weights separately when using the PEFT library.
import torch
from transformers import(
AutoModelForQuestionAnswering,
AutoTokenizer,
pipeline
)
model_name = "sjrhuschlee/flan-t5-large-squad2"
# a) Using pipelines
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
qa_input = {
'question': f'{nlp.tokenizer.cls_token}Where do I live?', # '<cls>Where do I live?'
'context': 'My name is Sarah and I live in London'
}
res = nlp(qa_input)
# {'score': 0.984, 'start': 30, 'end': 37, 'answer': ' London'}
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
question = f'{tokenizer.cls_token}Where do I live?' # '<cls>Where do I live?'
context = 'My name is Sarah and I live in London'
encoding = tokenizer(question, context, return_tensors="pt")
start_scores, end_scores = model(
encoding["input_ids"],
attention_mask=encoding["attention_mask"],
return_dict=False
)
all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0].tolist())
answer_tokens = all_tokens[torch.argmax(start_scores):torch.argmax(end_scores) + 1]
answer = tokenizer.decode(tokenizer.convert_tokens_to_ids(answer_tokens))
# 'London'
Metrics
# Squad v2
{
"eval_HasAns_exact": 85.08771929824562,
"eval_HasAns_f1": 90.598422845031,
"eval_HasAns_total": 5928,
"eval_NoAns_exact": 88.47771236333053,
"eval_NoAns_f1": 88.47771236333053,
"eval_NoAns_total": 5945,
"eval_best_exact": 86.78514276088605,
"eval_best_exact_thresh": 0.0,
"eval_best_f1": 89.53654936623764,
"eval_best_f1_thresh": 0.0,
"eval_exact": 86.78514276088605,
"eval_f1": 89.53654936623776,
"eval_runtime": 1908.3189,
"eval_samples": 12001,
"eval_samples_per_second": 6.289,
"eval_steps_per_second": 0.787,
"eval_total": 11873
}
# Squad
{
"eval_HasAns_exact": 85.99810785241249,
"eval_HasAns_f1": 91.296119057944,
"eval_HasAns_total": 10570,
"eval_best_exact": 85.99810785241249,
"eval_best_exact_thresh": 0.0,
"eval_best_f1": 91.296119057944,
"eval_best_f1_thresh": 0.0,
"eval_exact": 85.99810785241249,
"eval_f1": 91.296119057944,
"eval_runtime": 1508.9596,
"eval_samples": 10657,
"eval_samples_per_second": 7.062,
"eval_steps_per_second": 0.883,
"eval_total": 10570
}
Using with Peft
NOTE: This requires code in the PR https://github.com/huggingface/peft/pull/473 for the PEFT library.
#!pip install peft
from peft import LoraConfig, PeftModelForQuestionAnswering
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
model_name = "sjrhuschlee/flan-t5-large-squad2"