File size: 5,774 Bytes
d601245 4477d7e bc0854e 4477d7e bc0854e 7fe2ad3 25770ce 7fe2ad3 a3e980a 25770ce a3e980a 25770ce a3e980a 25770ce a3e980a 25770ce a3e980a 25770ce a3e980a 25770ce a3e980a 25770ce a3e980a 25770ce a3e980a 25770ce a3e980a 25770ce a3e980a 25770ce d601245 4477d7e dcdca48 4477d7e ef02c99 4477d7e 103e5be 4477d7e 103e5be 4477d7e 103e5be 7fe2ad3 ef02c99 7fe2ad3 ef02c99 bc0854e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
---
license: mit
datasets:
- squad_v2
- squad
language:
- en
library_name: transformers
pipeline_tag: question-answering
tags:
- deberta
- deberta-v3
- question-answering
- squad
- squad_v2
model-index:
- name: sjrhuschlee/deberta-v3-base-squad2
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: squad_v2
type: squad_v2
config: squad_v2
split: validation
metrics:
- type: exact_match
value: 85.648
name: Exact Match
- type: f1
value: 88.728
name: F1
- task:
type: question-answering
name: Question Answering
dataset:
name: squad
type: squad
config: plain_text
split: validation
metrics:
- type: exact_match
value: 87.862
name: Exact Match
- type: f1
value: 93.905
name: F1
- task:
type: question-answering
name: Question Answering
dataset:
name: adversarial_qa
type: adversarial_qa
config: adversarialQA
split: validation
metrics:
- type: exact_match
value: 34.367
name: Exact Match
- type: f1
value: 47.743
name: F1
- task:
type: question-answering
name: Question Answering
dataset:
name: squad_adversarial
type: squad_adversarial
config: AddOneSent
split: validation
metrics:
- type: exact_match
value: 82.597
name: Exact Match
- type: f1
value: 88.175
name: F1
- task:
type: question-answering
name: Question Answering
dataset:
name: squadshifts amazon
type: squadshifts
config: amazon
split: test
metrics:
- type: exact_match
value: 73.080
name: Exact Match
- type: f1
value: 86.389
name: F1
- task:
type: question-answering
name: Question Answering
dataset:
name: squadshifts new_wiki
type: squadshifts
config: new_wiki
split: test
metrics:
- type: exact_match
value: 83.195
name: Exact Match
- type: f1
value: 92.178
name: F1
- task:
type: question-answering
name: Question Answering
dataset:
name: squadshifts nyt
type: squadshifts
config: nyt
split: test
metrics:
- type: exact_match
value: 84.839
name: Exact Match
- type: f1
value: 92.493
name: F1
- task:
type: question-answering
name: Question Answering
dataset:
name: squadshifts reddit
type: squadshifts
config: reddit
split: test
metrics:
- type: exact_match
value: 71.896
name: Exact Match
- type: f1
value: 83.122
name: F1
---
# deberta-v3-base for Extractive QA
This is the [deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Extractive Question Answering.
## Overview
**Language model:** deberta-v3-base
**Language:** English
**Downstream-task:** Extractive QA
**Training data:** SQuAD 2.0
**Eval data:** SQuAD 2.0
**Infrastructure**: 1x NVIDIA 3070
## Model Usage
```python
import torch
from transformers import(
AutoModelForQuestionAnswering,
AutoTokenizer,
pipeline
)
model_name = "sjrhuschlee/deberta-v3-base-squad2"
# a) Using pipelines
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
qa_input = {
'question': 'Where do I live?',
'context': 'My name is Sarah and I live in London'
}
res = nlp(qa_input)
# {'score': 0.984, 'start': 30, 'end': 37, 'answer': ' London'}
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
question = 'Where do I live?'
context = 'My name is Sarah and I live in London'
encoding = tokenizer(question, context, return_tensors="pt")
start_scores, end_scores = model(
encoding["input_ids"],
attention_mask=encoding["attention_mask"],
return_dict=False
)
all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0].tolist())
answer_tokens = all_tokens[torch.argmax(start_scores):torch.argmax(end_scores) + 1]
answer = tokenizer.decode(tokenizer.convert_tokens_to_ids(answer_tokens))
# 'London'
```
## Metrics
```bash
# Squad v2
{
"eval_HasAns_exact": 82.72604588394061,
"eval_HasAns_f1": 88.89430905100325,
"eval_HasAns_total": 5928,
"eval_NoAns_exact": 88.56181665264928,
"eval_NoAns_f1": 88.56181665264928,
"eval_NoAns_total": 5945,
"eval_best_exact": 85.64810915522614,
"eval_best_exact_thresh": 0.0,
"eval_best_f1": 88.72782481717712,
"eval_best_f1_thresh": 0.0,
"eval_exact": 85.64810915522614,
"eval_f1": 88.72782481717726,
"eval_runtime": 219.6226,
"eval_samples": 11951,
"eval_samples_per_second": 54.416,
"eval_steps_per_second": 2.268,
"eval_total": 11873
}
# Squad
{
"eval_exact_match": 87.86187322611164,
"eval_f1": 93.92373735474943,
"eval_runtime": 195.2115,
"eval_samples": 10618,
"eval_samples_per_second": 54.392,
"eval_steps_per_second": 2.269
}
```
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4.0
### Framework versions
- Transformers 4.30.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3 |