File size: 5,774 Bytes
d601245
 
4477d7e
 
bc0854e
4477d7e
 
 
 
 
 
 
 
bc0854e
 
7fe2ad3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25770ce
7fe2ad3
a3e980a
 
 
 
 
 
 
 
 
25770ce
 
 
 
 
 
a3e980a
 
 
 
 
 
 
 
 
 
25770ce
a3e980a
 
25770ce
a3e980a
 
 
 
 
25770ce
a3e980a
 
 
 
25770ce
 
 
 
 
 
a3e980a
 
 
 
25770ce
a3e980a
 
 
 
25770ce
 
 
 
 
 
a3e980a
 
 
 
25770ce
a3e980a
 
 
 
25770ce
 
 
 
 
 
a3e980a
 
 
 
25770ce
a3e980a
 
 
 
25770ce
 
 
 
 
 
d601245
4477d7e
dcdca48
4477d7e
 
 
 
 
 
 
 
 
 
 
ef02c99
4477d7e
103e5be
 
 
 
 
 
4477d7e
 
 
 
 
 
 
 
 
103e5be
4477d7e
 
 
 
103e5be
 
 
 
 
 
 
 
 
 
 
 
 
 
7fe2ad3
 
ef02c99
7fe2ad3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef02c99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc0854e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
---
license: mit
datasets:
- squad_v2
- squad
language:
- en
library_name: transformers
pipeline_tag: question-answering
tags:
- deberta
- deberta-v3
- question-answering
- squad
- squad_v2
model-index:
- name: sjrhuschlee/deberta-v3-base-squad2
  results:
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squad_v2
      type: squad_v2
      config: squad_v2
      split: validation
    metrics:
    - type: exact_match
      value: 85.648
      name: Exact Match
    - type: f1
      value: 88.728
      name: F1
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squad
      type: squad
      config: plain_text
      split: validation
    metrics:
    - type: exact_match
      value: 87.862
      name: Exact Match
    - type: f1
      value: 93.905
      name: F1
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: adversarial_qa
      type: adversarial_qa
      config: adversarialQA
      split: validation
    metrics:
    - type: exact_match
      value: 34.367
      name: Exact Match
    - type: f1
      value: 47.743
      name: F1
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squad_adversarial
      type: squad_adversarial
      config: AddOneSent
      split: validation
    metrics:
    - type: exact_match
      value: 82.597
      name: Exact Match
    - type: f1
      value: 88.175
      name: F1
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squadshifts amazon
      type: squadshifts
      config: amazon
      split: test
    metrics:
    - type: exact_match
      value: 73.080
      name: Exact Match
    - type: f1
      value: 86.389
      name: F1
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squadshifts new_wiki
      type: squadshifts
      config: new_wiki
      split: test
    metrics:
    - type: exact_match
      value: 83.195
      name: Exact Match
    - type: f1
      value: 92.178
      name: F1
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squadshifts nyt
      type: squadshifts
      config: nyt
      split: test
    metrics:
    - type: exact_match
      value: 84.839
      name: Exact Match
    - type: f1
      value: 92.493
      name: F1
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squadshifts reddit
      type: squadshifts
      config: reddit
      split: test
    metrics:
    - type: exact_match
      value: 71.896
      name: Exact Match
    - type: f1
      value: 83.122
      name: F1
---

# deberta-v3-base for Extractive QA

This is the [deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Extractive Question Answering.

## Overview
**Language model:** deberta-v3-base  
**Language:** English  
**Downstream-task:** Extractive QA  
**Training data:** SQuAD 2.0  
**Eval data:** SQuAD 2.0  
**Infrastructure**: 1x NVIDIA 3070  

## Model Usage
```python
import torch
from transformers import(
  AutoModelForQuestionAnswering,
  AutoTokenizer,
  pipeline
)
model_name = "sjrhuschlee/deberta-v3-base-squad2"

# a) Using pipelines
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
qa_input = {
'question': 'Where do I live?',
'context': 'My name is Sarah and I live in London'
}
res = nlp(qa_input)
# {'score': 0.984, 'start': 30, 'end': 37, 'answer': ' London'}

# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

question = 'Where do I live?'
context = 'My name is Sarah and I live in London'
encoding = tokenizer(question, context, return_tensors="pt")
start_scores, end_scores = model(
  encoding["input_ids"],
  attention_mask=encoding["attention_mask"],
  return_dict=False
)

all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0].tolist())
answer_tokens = all_tokens[torch.argmax(start_scores):torch.argmax(end_scores) + 1]
answer = tokenizer.decode(tokenizer.convert_tokens_to_ids(answer_tokens))
# 'London'
```

## Metrics

```bash
# Squad v2
{
    "eval_HasAns_exact": 82.72604588394061,
    "eval_HasAns_f1": 88.89430905100325,
    "eval_HasAns_total": 5928,
    "eval_NoAns_exact": 88.56181665264928,
    "eval_NoAns_f1": 88.56181665264928,
    "eval_NoAns_total": 5945,
    "eval_best_exact": 85.64810915522614,
    "eval_best_exact_thresh": 0.0,
    "eval_best_f1": 88.72782481717712,
    "eval_best_f1_thresh": 0.0,
    "eval_exact": 85.64810915522614,
    "eval_f1": 88.72782481717726,
    "eval_runtime": 219.6226,
    "eval_samples": 11951,
    "eval_samples_per_second": 54.416,
    "eval_steps_per_second": 2.268,
    "eval_total": 11873
}

# Squad
{
    "eval_exact_match": 87.86187322611164,
    "eval_f1": 93.92373735474943,
    "eval_runtime": 195.2115,
    "eval_samples": 10618,
    "eval_samples_per_second": 54.392,
    "eval_steps_per_second": 2.269
}
```

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4.0

### Framework versions

- Transformers 4.30.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3