sjrhuschlee commited on
Commit
4477d7e
1 Parent(s): d601245

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -0
README.md CHANGED
@@ -1,3 +1,43 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ datasets:
4
+ - squad_v2
5
+ language:
6
+ - en
7
+ library_name: transformers
8
+ pipeline_tag: question-answering
9
+ tags:
10
+ - deberta
11
+ - deberta-v3
12
+ - question-answering
13
  ---
14
+
15
+ # deberta-v3-base for QA
16
+
17
+ This is the [deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Extractive Question Answering.
18
+
19
+ ## Overview
20
+ **Language model:** deberta-v3-base
21
+ **Language:** English
22
+ **Downstream-task:** Extractive QA
23
+ **Training data:** SQuAD 2.0
24
+ **Eval data:** SQuAD 2.0
25
+ **Infrastructure**: 1x NVIDIA 3070
26
+
27
+ ### Model Usage
28
+ ```python
29
+ from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
30
+ model_name = "sjrhuschlee/deberta-v3-base-squad2"
31
+
32
+ # a) Using pipelines
33
+ nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
34
+ qa_input = {
35
+ 'question': 'Where do I live?',
36
+ 'context': 'My name is Sarah and I live in London'
37
+ }
38
+ res = nlp(qa_input)
39
+
40
+ # b) Load model & tokenizer
41
+ model = AutoModelForQuestionAnswering.from_pretrained(model_name)
42
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
43
+ ```