sionic-ai-v2 / README.md
sionic's picture
Update README.md
7bb3233
|
raw
history blame
62.7 kB
metadata
tags:
  - mteb
  - feature-extraction
  - sentence-similarity
model-index:
  - name: v2
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 76.56716417910448
          - type: ap
            value: 39.864746145463656
          - type: f1
            value: 70.60275403114987
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 93.46427500000001
          - type: ap
            value: 90.36283359936121
          - type: f1
            value: 93.45329322673612
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 48.77199999999999
          - type: f1
            value: 48.16695258838576
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 40.184999999999995
          - type: map_at_10
            value: 56.114
          - type: map_at_100
            value: 56.676
          - type: map_at_1000
            value: 56.68
          - type: map_at_3
            value: 51.968
          - type: map_at_5
            value: 54.642
          - type: mrr_at_1
            value: 40.896
          - type: mrr_at_10
            value: 56.388000000000005
          - type: mrr_at_100
            value: 56.95099999999999
          - type: mrr_at_1000
            value: 56.95400000000001
          - type: mrr_at_3
            value: 52.251999999999995
          - type: mrr_at_5
            value: 54.879999999999995
          - type: ndcg_at_1
            value: 40.184999999999995
          - type: ndcg_at_10
            value: 64.253
          - type: ndcg_at_100
            value: 66.47
          - type: ndcg_at_1000
            value: 66.549
          - type: ndcg_at_3
            value: 55.945
          - type: ndcg_at_5
            value: 60.742
          - type: precision_at_1
            value: 40.184999999999995
          - type: precision_at_10
            value: 8.982999999999999
          - type: precision_at_100
            value: 0.991
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 22.499
          - type: precision_at_5
            value: 15.817999999999998
          - type: recall_at_1
            value: 40.184999999999995
          - type: recall_at_10
            value: 89.82900000000001
          - type: recall_at_100
            value: 99.075
          - type: recall_at_1000
            value: 99.644
          - type: recall_at_3
            value: 67.496
          - type: recall_at_5
            value: 79.09
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 49.64684811204023
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 43.6640710523389
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 63.71316367624821
          - type: mrr
            value: 77.02534845886647
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 88.96786300506704
          - type: cos_sim_spearman
            value: 88.08212749295554
          - type: euclidean_pearson
            value: 87.1561534920524
          - type: euclidean_spearman
            value: 88.016463346151
          - type: manhattan_pearson
            value: 87.19359910450564
          - type: manhattan_spearman
            value: 88.10803169765825
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 87.46103896103897
          - type: f1
            value: 87.4315144014101
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 41.03554871732576
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 37.974813344124264
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 34.174
          - type: map_at_10
            value: 45.728
          - type: map_at_100
            value: 47.266999999999996
          - type: map_at_1000
            value: 47.39
          - type: map_at_3
            value: 41.667
          - type: map_at_5
            value: 44.028
          - type: mrr_at_1
            value: 41.202
          - type: mrr_at_10
            value: 51.49
          - type: mrr_at_100
            value: 52.159
          - type: mrr_at_1000
            value: 52.197
          - type: mrr_at_3
            value: 48.379
          - type: mrr_at_5
            value: 50.331
          - type: ndcg_at_1
            value: 41.202
          - type: ndcg_at_10
            value: 52.38699999999999
          - type: ndcg_at_100
            value: 57.611999999999995
          - type: ndcg_at_1000
            value: 59.318000000000005
          - type: ndcg_at_3
            value: 46.516000000000005
          - type: ndcg_at_5
            value: 49.519000000000005
          - type: precision_at_1
            value: 41.202
          - type: precision_at_10
            value: 9.971
          - type: precision_at_100
            value: 1.5879999999999999
          - type: precision_at_1000
            value: 0.20500000000000002
          - type: precision_at_3
            value: 22.031
          - type: precision_at_5
            value: 16.309
          - type: recall_at_1
            value: 34.174
          - type: recall_at_10
            value: 65.32900000000001
          - type: recall_at_100
            value: 86.64
          - type: recall_at_1000
            value: 97.069
          - type: recall_at_3
            value: 48.607
          - type: recall_at_5
            value: 56.615
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 34.73
          - type: map_at_10
            value: 45.617999999999995
          - type: map_at_100
            value: 46.888000000000005
          - type: map_at_1000
            value: 47.016999999999996
          - type: map_at_3
            value: 42.425000000000004
          - type: map_at_5
            value: 44.214999999999996
          - type: mrr_at_1
            value: 43.631
          - type: mrr_at_10
            value: 52.014
          - type: mrr_at_100
            value: 52.6
          - type: mrr_at_1000
            value: 52.637
          - type: mrr_at_3
            value: 50.021
          - type: mrr_at_5
            value: 51.23799999999999
          - type: ndcg_at_1
            value: 43.631
          - type: ndcg_at_10
            value: 51.458000000000006
          - type: ndcg_at_100
            value: 55.61000000000001
          - type: ndcg_at_1000
            value: 57.462
          - type: ndcg_at_3
            value: 47.461
          - type: ndcg_at_5
            value: 49.312
          - type: precision_at_1
            value: 43.631
          - type: precision_at_10
            value: 9.661999999999999
          - type: precision_at_100
            value: 1.5270000000000001
          - type: precision_at_1000
            value: 0.198
          - type: precision_at_3
            value: 22.823999999999998
          - type: precision_at_5
            value: 16.075999999999997
          - type: recall_at_1
            value: 34.73
          - type: recall_at_10
            value: 61.041999999999994
          - type: recall_at_100
            value: 78.658
          - type: recall_at_1000
            value: 90.215
          - type: recall_at_3
            value: 48.952
          - type: recall_at_5
            value: 54.422000000000004
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 42.047000000000004
          - type: map_at_10
            value: 55.669999999999995
          - type: map_at_100
            value: 56.676
          - type: map_at_1000
            value: 56.728
          - type: map_at_3
            value: 52.275000000000006
          - type: map_at_5
            value: 54.254000000000005
          - type: mrr_at_1
            value: 48.15
          - type: mrr_at_10
            value: 59.036
          - type: mrr_at_100
            value: 59.650999999999996
          - type: mrr_at_1000
            value: 59.675
          - type: mrr_at_3
            value: 56.760999999999996
          - type: mrr_at_5
            value: 58.087
          - type: ndcg_at_1
            value: 48.15
          - type: ndcg_at_10
            value: 61.709
          - type: ndcg_at_100
            value: 65.446
          - type: ndcg_at_1000
            value: 66.388
          - type: ndcg_at_3
            value: 56.333
          - type: ndcg_at_5
            value: 59.028000000000006
          - type: precision_at_1
            value: 48.15
          - type: precision_at_10
            value: 9.893
          - type: precision_at_100
            value: 1.265
          - type: precision_at_1000
            value: 0.13799999999999998
          - type: precision_at_3
            value: 25.266
          - type: precision_at_5
            value: 17.204
          - type: recall_at_1
            value: 42.047000000000004
          - type: recall_at_10
            value: 76.004
          - type: recall_at_100
            value: 91.727
          - type: recall_at_1000
            value: 98.213
          - type: recall_at_3
            value: 61.82
          - type: recall_at_5
            value: 68.42200000000001
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 29.985
          - type: map_at_10
            value: 38.763999999999996
          - type: map_at_100
            value: 39.835
          - type: map_at_1000
            value: 39.900000000000006
          - type: map_at_3
            value: 35.826
          - type: map_at_5
            value: 37.403
          - type: mrr_at_1
            value: 32.202999999999996
          - type: mrr_at_10
            value: 40.94
          - type: mrr_at_100
            value: 41.861
          - type: mrr_at_1000
            value: 41.909
          - type: mrr_at_3
            value: 38.267
          - type: mrr_at_5
            value: 39.748
          - type: ndcg_at_1
            value: 32.202999999999996
          - type: ndcg_at_10
            value: 43.909
          - type: ndcg_at_100
            value: 49.028
          - type: ndcg_at_1000
            value: 50.714999999999996
          - type: ndcg_at_3
            value: 38.239000000000004
          - type: ndcg_at_5
            value: 40.854
          - type: precision_at_1
            value: 32.202999999999996
          - type: precision_at_10
            value: 6.621
          - type: precision_at_100
            value: 0.964
          - type: precision_at_1000
            value: 0.11399999999999999
          - type: precision_at_3
            value: 15.781999999999998
          - type: precision_at_5
            value: 10.96
          - type: recall_at_1
            value: 29.985
          - type: recall_at_10
            value: 57.727
          - type: recall_at_100
            value: 80.833
          - type: recall_at_1000
            value: 93.625
          - type: recall_at_3
            value: 42.396
          - type: recall_at_5
            value: 48.624
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 19.249
          - type: map_at_10
            value: 28.565
          - type: map_at_100
            value: 29.753
          - type: map_at_1000
            value: 29.881
          - type: map_at_3
            value: 25.778000000000002
          - type: map_at_5
            value: 27.21
          - type: mrr_at_1
            value: 23.632
          - type: mrr_at_10
            value: 33.51
          - type: mrr_at_100
            value: 34.372
          - type: mrr_at_1000
            value: 34.443
          - type: mrr_at_3
            value: 30.784
          - type: mrr_at_5
            value: 32.301
          - type: ndcg_at_1
            value: 23.632
          - type: ndcg_at_10
            value: 34.42
          - type: ndcg_at_100
            value: 39.823
          - type: ndcg_at_1000
            value: 42.558
          - type: ndcg_at_3
            value: 29.237000000000002
          - type: ndcg_at_5
            value: 31.465
          - type: precision_at_1
            value: 23.632
          - type: precision_at_10
            value: 6.331
          - type: precision_at_100
            value: 1.042
          - type: precision_at_1000
            value: 0.14100000000000001
          - type: precision_at_3
            value: 14.179
          - type: precision_at_5
            value: 10.299
          - type: recall_at_1
            value: 19.249
          - type: recall_at_10
            value: 47.539
          - type: recall_at_100
            value: 70.612
          - type: recall_at_1000
            value: 89.633
          - type: recall_at_3
            value: 33.082
          - type: recall_at_5
            value: 38.622
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 31.599
          - type: map_at_10
            value: 42.948
          - type: map_at_100
            value: 44.244
          - type: map_at_1000
            value: 44.352000000000004
          - type: map_at_3
            value: 39.352
          - type: map_at_5
            value: 41.397
          - type: mrr_at_1
            value: 38.21
          - type: mrr_at_10
            value: 48.347
          - type: mrr_at_100
            value: 49.132999999999996
          - type: mrr_at_1000
            value: 49.171
          - type: mrr_at_3
            value: 45.653
          - type: mrr_at_5
            value: 47.323
          - type: ndcg_at_1
            value: 38.21
          - type: ndcg_at_10
            value: 49.225
          - type: ndcg_at_100
            value: 54.422000000000004
          - type: ndcg_at_1000
            value: 56.27799999999999
          - type: ndcg_at_3
            value: 43.482
          - type: ndcg_at_5
            value: 46.321
          - type: precision_at_1
            value: 38.21
          - type: precision_at_10
            value: 8.921999999999999
          - type: precision_at_100
            value: 1.333
          - type: precision_at_1000
            value: 0.169
          - type: precision_at_3
            value: 20.372
          - type: precision_at_5
            value: 14.629
          - type: recall_at_1
            value: 31.599
          - type: recall_at_10
            value: 62.364
          - type: recall_at_100
            value: 83.91199999999999
          - type: recall_at_1000
            value: 95.743
          - type: recall_at_3
            value: 46.671
          - type: recall_at_5
            value: 53.772
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 26.641
          - type: map_at_10
            value: 37.604
          - type: map_at_100
            value: 38.897
          - type: map_at_1000
            value: 39.001000000000005
          - type: map_at_3
            value: 34.04
          - type: map_at_5
            value: 35.684
          - type: mrr_at_1
            value: 32.991
          - type: mrr_at_10
            value: 43.029
          - type: mrr_at_100
            value: 43.782
          - type: mrr_at_1000
            value: 43.830999999999996
          - type: mrr_at_3
            value: 40.164
          - type: mrr_at_5
            value: 41.619
          - type: ndcg_at_1
            value: 32.991
          - type: ndcg_at_10
            value: 44.217
          - type: ndcg_at_100
            value: 49.497
          - type: ndcg_at_1000
            value: 51.598
          - type: ndcg_at_3
            value: 38.208999999999996
          - type: ndcg_at_5
            value: 40.444
          - type: precision_at_1
            value: 32.991
          - type: precision_at_10
            value: 8.436
          - type: precision_at_100
            value: 1.279
          - type: precision_at_1000
            value: 0.163
          - type: precision_at_3
            value: 18.379
          - type: precision_at_5
            value: 13.196
          - type: recall_at_1
            value: 26.641
          - type: recall_at_10
            value: 58.50300000000001
          - type: recall_at_100
            value: 81.228
          - type: recall_at_1000
            value: 95.345
          - type: recall_at_3
            value: 41.6
          - type: recall_at_5
            value: 47.425
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 28.678083333333333
          - type: map_at_10
            value: 38.63366666666666
          - type: map_at_100
            value: 39.84708333333333
          - type: map_at_1000
            value: 39.959583333333335
          - type: map_at_3
            value: 35.49
          - type: map_at_5
            value: 37.23125
          - type: mrr_at_1
            value: 33.813916666666664
          - type: mrr_at_10
            value: 42.955500000000015
          - type: mrr_at_100
            value: 43.75541666666667
          - type: mrr_at_1000
            value: 43.80616666666666
          - type: mrr_at_3
            value: 40.40191666666667
          - type: mrr_at_5
            value: 41.88358333333333
          - type: ndcg_at_1
            value: 33.813916666666664
          - type: ndcg_at_10
            value: 44.361666666666665
          - type: ndcg_at_100
            value: 49.37991666666667
          - type: ndcg_at_1000
            value: 51.432583333333326
          - type: ndcg_at_3
            value: 39.12949999999999
          - type: ndcg_at_5
            value: 41.60183333333333
          - type: precision_at_1
            value: 33.813916666666664
          - type: precision_at_10
            value: 7.759250000000002
          - type: precision_at_100
            value: 1.2108333333333332
          - type: precision_at_1000
            value: 0.158
          - type: precision_at_3
            value: 17.90716666666667
          - type: precision_at_5
            value: 12.765333333333334
          - type: recall_at_1
            value: 28.678083333333333
          - type: recall_at_10
            value: 56.92716666666667
          - type: recall_at_100
            value: 78.74991666666668
          - type: recall_at_1000
            value: 92.73875000000001
          - type: recall_at_3
            value: 42.459916666666665
          - type: recall_at_5
            value: 48.76258333333333
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 27.282
          - type: map_at_10
            value: 34.458
          - type: map_at_100
            value: 35.44
          - type: map_at_1000
            value: 35.536
          - type: map_at_3
            value: 31.912000000000003
          - type: map_at_5
            value: 33.495000000000005
          - type: mrr_at_1
            value: 30.675
          - type: mrr_at_10
            value: 37.563
          - type: mrr_at_100
            value: 38.374
          - type: mrr_at_1000
            value: 38.444
          - type: mrr_at_3
            value: 35.276
          - type: mrr_at_5
            value: 36.718
          - type: ndcg_at_1
            value: 30.675
          - type: ndcg_at_10
            value: 38.838
          - type: ndcg_at_100
            value: 43.527
          - type: ndcg_at_1000
            value: 45.891
          - type: ndcg_at_3
            value: 34.314
          - type: ndcg_at_5
            value: 36.789
          - type: precision_at_1
            value: 30.675
          - type: precision_at_10
            value: 6.012
          - type: precision_at_100
            value: 0.903
          - type: precision_at_1000
            value: 0.117
          - type: precision_at_3
            value: 14.571000000000002
          - type: precision_at_5
            value: 10.306999999999999
          - type: recall_at_1
            value: 27.282
          - type: recall_at_10
            value: 49.198
          - type: recall_at_100
            value: 70.489
          - type: recall_at_1000
            value: 87.902
          - type: recall_at_3
            value: 36.966
          - type: recall_at_5
            value: 43.079
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 19.839000000000002
          - type: map_at_10
            value: 27.68
          - type: map_at_100
            value: 28.851
          - type: map_at_1000
            value: 28.977999999999998
          - type: map_at_3
            value: 25.062
          - type: map_at_5
            value: 26.389000000000003
          - type: mrr_at_1
            value: 23.813000000000002
          - type: mrr_at_10
            value: 31.628
          - type: mrr_at_100
            value: 32.58
          - type: mrr_at_1000
            value: 32.655
          - type: mrr_at_3
            value: 29.29
          - type: mrr_at_5
            value: 30.551000000000002
          - type: ndcg_at_1
            value: 23.813000000000002
          - type: ndcg_at_10
            value: 32.751000000000005
          - type: ndcg_at_100
            value: 38.218
          - type: ndcg_at_1000
            value: 40.979
          - type: ndcg_at_3
            value: 28.043000000000003
          - type: ndcg_at_5
            value: 30.043
          - type: precision_at_1
            value: 23.813000000000002
          - type: precision_at_10
            value: 5.936
          - type: precision_at_100
            value: 1.016
          - type: precision_at_1000
            value: 0.14400000000000002
          - type: precision_at_3
            value: 13.145000000000001
          - type: precision_at_5
            value: 9.443
          - type: recall_at_1
            value: 19.839000000000002
          - type: recall_at_10
            value: 44.072
          - type: recall_at_100
            value: 68.406
          - type: recall_at_1000
            value: 87.749
          - type: recall_at_3
            value: 30.906
          - type: recall_at_5
            value: 36.081
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 28.195999999999998
          - type: map_at_10
            value: 38.345
          - type: map_at_100
            value: 39.561
          - type: map_at_1000
            value: 39.65
          - type: map_at_3
            value: 35.382999999999996
          - type: map_at_5
            value: 37.023
          - type: mrr_at_1
            value: 33.022
          - type: mrr_at_10
            value: 42.504
          - type: mrr_at_100
            value: 43.376
          - type: mrr_at_1000
            value: 43.427
          - type: mrr_at_3
            value: 40.050000000000004
          - type: mrr_at_5
            value: 41.421
          - type: ndcg_at_1
            value: 33.022
          - type: ndcg_at_10
            value: 43.997
          - type: ndcg_at_100
            value: 49.370000000000005
          - type: ndcg_at_1000
            value: 51.38399999999999
          - type: ndcg_at_3
            value: 38.802
          - type: ndcg_at_5
            value: 41.209
          - type: precision_at_1
            value: 33.022
          - type: precision_at_10
            value: 7.351000000000001
          - type: precision_at_100
            value: 1.1440000000000001
          - type: precision_at_1000
            value: 0.14200000000000002
          - type: precision_at_3
            value: 17.724
          - type: precision_at_5
            value: 12.443999999999999
          - type: recall_at_1
            value: 28.195999999999998
          - type: recall_at_10
            value: 57.011
          - type: recall_at_100
            value: 79.922
          - type: recall_at_1000
            value: 93.952
          - type: recall_at_3
            value: 42.857
          - type: recall_at_5
            value: 48.916
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 25.768
          - type: map_at_10
            value: 35.118
          - type: map_at_100
            value: 36.817
          - type: map_at_1000
            value: 37.037
          - type: map_at_3
            value: 31.997999999999998
          - type: map_at_5
            value: 33.697
          - type: mrr_at_1
            value: 31.621
          - type: mrr_at_10
            value: 40.228
          - type: mrr_at_100
            value: 41.239
          - type: mrr_at_1000
            value: 41.277
          - type: mrr_at_3
            value: 37.614999999999995
          - type: mrr_at_5
            value: 39.058
          - type: ndcg_at_1
            value: 31.621
          - type: ndcg_at_10
            value: 41.347
          - type: ndcg_at_100
            value: 47.620000000000005
          - type: ndcg_at_1000
            value: 49.759
          - type: ndcg_at_3
            value: 36.361
          - type: ndcg_at_5
            value: 38.635000000000005
          - type: precision_at_1
            value: 31.621
          - type: precision_at_10
            value: 8.024000000000001
          - type: precision_at_100
            value: 1.595
          - type: precision_at_1000
            value: 0.244
          - type: precision_at_3
            value: 16.996
          - type: precision_at_5
            value: 12.372
          - type: recall_at_1
            value: 25.768
          - type: recall_at_10
            value: 53.02
          - type: recall_at_100
            value: 81.329
          - type: recall_at_1000
            value: 94.025
          - type: recall_at_3
            value: 38.884
          - type: recall_at_5
            value: 45.057
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 24.627
          - type: map_at_10
            value: 33.106
          - type: map_at_100
            value: 33.936
          - type: map_at_1000
            value: 34.044999999999995
          - type: map_at_3
            value: 30.162
          - type: map_at_5
            value: 31.979999999999997
          - type: mrr_at_1
            value: 26.617
          - type: mrr_at_10
            value: 35.177
          - type: mrr_at_100
            value: 35.937999999999995
          - type: mrr_at_1000
            value: 36.008
          - type: mrr_at_3
            value: 32.562999999999995
          - type: mrr_at_5
            value: 34.208
          - type: ndcg_at_1
            value: 26.617
          - type: ndcg_at_10
            value: 38.082
          - type: ndcg_at_100
            value: 42.386
          - type: ndcg_at_1000
            value: 44.861000000000004
          - type: ndcg_at_3
            value: 32.557
          - type: ndcg_at_5
            value: 35.603
          - type: precision_at_1
            value: 26.617
          - type: precision_at_10
            value: 5.952
          - type: precision_at_100
            value: 0.874
          - type: precision_at_1000
            value: 0.121
          - type: precision_at_3
            value: 13.617
          - type: precision_at_5
            value: 9.945
          - type: recall_at_1
            value: 24.627
          - type: recall_at_10
            value: 51.317
          - type: recall_at_100
            value: 71.243
          - type: recall_at_1000
            value: 89.39399999999999
          - type: recall_at_3
            value: 36.778
          - type: recall_at_5
            value: 44.116
      - task:
          type: Retrieval
        dataset:
          type: climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 16.631
          - type: map_at_10
            value: 28.069
          - type: map_at_100
            value: 30.130000000000003
          - type: map_at_1000
            value: 30.318
          - type: map_at_3
            value: 23.430999999999997
          - type: map_at_5
            value: 25.929000000000002
          - type: mrr_at_1
            value: 37.264
          - type: mrr_at_10
            value: 49.608999999999995
          - type: mrr_at_100
            value: 50.349
          - type: mrr_at_1000
            value: 50.373000000000005
          - type: mrr_at_3
            value: 46.515
          - type: mrr_at_5
            value: 48.41
          - type: ndcg_at_1
            value: 37.264
          - type: ndcg_at_10
            value: 37.688
          - type: ndcg_at_100
            value: 45.101
          - type: ndcg_at_1000
            value: 48.19
          - type: ndcg_at_3
            value: 31.471
          - type: ndcg_at_5
            value: 33.719
          - type: precision_at_1
            value: 37.264
          - type: precision_at_10
            value: 11.616
          - type: precision_at_100
            value: 1.9619999999999997
          - type: precision_at_1000
            value: 0.255
          - type: precision_at_3
            value: 23.214000000000002
          - type: precision_at_5
            value: 17.824
          - type: recall_at_1
            value: 16.631
          - type: recall_at_10
            value: 43.516
          - type: recall_at_100
            value: 68.681
          - type: recall_at_1000
            value: 85.751
          - type: recall_at_3
            value: 28.199
          - type: recall_at_5
            value: 34.826
      - task:
          type: Retrieval
        dataset:
          type: dbpedia-entity
          name: MTEB DBPedia
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 9.971
          - type: map_at_10
            value: 22.274
          - type: map_at_100
            value: 32.61
          - type: map_at_1000
            value: 34.422000000000004
          - type: map_at_3
            value: 15.473999999999998
          - type: map_at_5
            value: 18.412
          - type: mrr_at_1
            value: 72.25
          - type: mrr_at_10
            value: 79.945
          - type: mrr_at_100
            value: 80.192
          - type: mrr_at_1000
            value: 80.199
          - type: mrr_at_3
            value: 78.667
          - type: mrr_at_5
            value: 79.49199999999999
          - type: ndcg_at_1
            value: 59.75
          - type: ndcg_at_10
            value: 45.689
          - type: ndcg_at_100
            value: 51.687000000000005
          - type: ndcg_at_1000
            value: 58.904999999999994
          - type: ndcg_at_3
            value: 49.675999999999995
          - type: ndcg_at_5
            value: 47.419
          - type: precision_at_1
            value: 72.25
          - type: precision_at_10
            value: 37.05
          - type: precision_at_100
            value: 12.183
          - type: precision_at_1000
            value: 2.2929999999999997
          - type: precision_at_3
            value: 53.417
          - type: precision_at_5
            value: 46.150000000000006
          - type: recall_at_1
            value: 9.971
          - type: recall_at_10
            value: 27.932000000000002
          - type: recall_at_100
            value: 58.85399999999999
          - type: recall_at_1000
            value: 81.728
          - type: recall_at_3
            value: 16.619999999999997
          - type: recall_at_5
            value: 21.082
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 52.83499999999999
          - type: f1
            value: 47.754076079187044
      - task:
          type: Retrieval
        dataset:
          type: fever
          name: MTEB FEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 79.783
          - type: map_at_10
            value: 87.224
          - type: map_at_100
            value: 87.401
          - type: map_at_1000
            value: 87.413
          - type: map_at_3
            value: 86.29
          - type: map_at_5
            value: 86.896
          - type: mrr_at_1
            value: 86.09400000000001
          - type: mrr_at_10
            value: 91.789
          - type: mrr_at_100
            value: 91.814
          - type: mrr_at_1000
            value: 91.815
          - type: mrr_at_3
            value: 91.39399999999999
          - type: mrr_at_5
            value: 91.684
          - type: ndcg_at_1
            value: 86.09400000000001
          - type: ndcg_at_10
            value: 90.36999999999999
          - type: ndcg_at_100
            value: 90.95299999999999
          - type: ndcg_at_1000
            value: 91.13799999999999
          - type: ndcg_at_3
            value: 89.13799999999999
          - type: ndcg_at_5
            value: 89.845
          - type: precision_at_1
            value: 86.09400000000001
          - type: precision_at_10
            value: 10.671
          - type: precision_at_100
            value: 1.123
          - type: precision_at_1000
            value: 0.11499999999999999
          - type: precision_at_3
            value: 33.698
          - type: precision_at_5
            value: 20.788999999999998
          - type: recall_at_1
            value: 79.783
          - type: recall_at_10
            value: 95.50999999999999
          - type: recall_at_100
            value: 97.68900000000001
          - type: recall_at_1000
            value: 98.79400000000001
          - type: recall_at_3
            value: 92.14099999999999
          - type: recall_at_5
            value: 94
      - task:
          type: Retrieval
        dataset:
          type: fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 23.526
          - type: map_at_10
            value: 38.135999999999996
          - type: map_at_100
            value: 40.221000000000004
          - type: map_at_1000
            value: 40.394000000000005
          - type: map_at_3
            value: 33.548
          - type: map_at_5
            value: 35.975
          - type: mrr_at_1
            value: 47.068
          - type: mrr_at_10
            value: 55.224
          - type: mrr_at_100
            value: 56.038
          - type: mrr_at_1000
            value: 56.066
          - type: mrr_at_3
            value: 53.00899999999999
          - type: mrr_at_5
            value: 54.306
          - type: ndcg_at_1
            value: 47.068
          - type: ndcg_at_10
            value: 46.399
          - type: ndcg_at_100
            value: 53.312000000000005
          - type: ndcg_at_1000
            value: 55.946
          - type: ndcg_at_3
            value: 42.954
          - type: ndcg_at_5
            value: 43.765
          - type: precision_at_1
            value: 47.068
          - type: precision_at_10
            value: 12.824
          - type: precision_at_100
            value: 1.986
          - type: precision_at_1000
            value: 0.246
          - type: precision_at_3
            value: 28.807
          - type: precision_at_5
            value: 20.772
          - type: recall_at_1
            value: 23.526
          - type: recall_at_10
            value: 53.242999999999995
          - type: recall_at_100
            value: 78.309
          - type: recall_at_1000
            value: 93.92099999999999
          - type: recall_at_3
            value: 38.716
          - type: recall_at_5
            value: 44.921
      - task:
          type: Retrieval
        dataset:
          type: hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 41.641
          - type: map_at_10
            value: 67.24
          - type: map_at_100
            value: 68.108
          - type: map_at_1000
            value: 68.157
          - type: map_at_3
            value: 63.834999999999994
          - type: map_at_5
            value: 65.995
          - type: mrr_at_1
            value: 83.282
          - type: mrr_at_10
            value: 88.22
          - type: mrr_at_100
            value: 88.35499999999999
          - type: mrr_at_1000
            value: 88.358
          - type: mrr_at_3
            value: 87.571
          - type: mrr_at_5
            value: 88.01299999999999
          - type: ndcg_at_1
            value: 83.282
          - type: ndcg_at_10
            value: 75.066
          - type: ndcg_at_100
            value: 77.952
          - type: ndcg_at_1000
            value: 78.878
          - type: ndcg_at_3
            value: 70.482
          - type: ndcg_at_5
            value: 73.098
          - type: precision_at_1
            value: 83.282
          - type: precision_at_10
            value: 15.608
          - type: precision_at_100
            value: 1.7840000000000003
          - type: precision_at_1000
            value: 0.191
          - type: precision_at_3
            value: 45.324999999999996
          - type: precision_at_5
            value: 29.256
          - type: recall_at_1
            value: 41.641
          - type: recall_at_10
            value: 78.042
          - type: recall_at_100
            value: 89.223
          - type: recall_at_1000
            value: 95.341
          - type: recall_at_3
            value: 67.988
          - type: recall_at_5
            value: 73.14
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 93.50520000000002
          - type: ap
            value: 90.36560251927821
          - type: f1
            value: 93.50064413170799
      - task:
          type: Retrieval
        dataset:
          type: msmarco
          name: MTEB MSMARCO
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 23.355999999999998
          - type: map_at_10
            value: 36.082
          - type: map_at_100
            value: 37.239
          - type: map_at_1000
            value: 37.285000000000004
          - type: map_at_3
            value: 32.16
          - type: map_at_5
            value: 34.469
          - type: mrr_at_1
            value: 23.968
          - type: mrr_at_10
            value: 36.708
          - type: mrr_at_100
            value: 37.795
          - type: mrr_at_1000
            value: 37.836
          - type: mrr_at_3
            value: 32.865
          - type: mrr_at_5
            value: 35.154
          - type: ndcg_at_1
            value: 23.968
          - type: ndcg_at_10
            value: 43.152
          - type: ndcg_at_100
            value: 48.615
          - type: ndcg_at_1000
            value: 49.714000000000006
          - type: ndcg_at_3
            value: 35.208
          - type: ndcg_at_5
            value: 39.342
          - type: precision_at_1
            value: 23.968
          - type: precision_at_10
            value: 6.784
          - type: precision_at_100
            value: 0.951
          - type: precision_at_1000
            value: 0.104
          - type: precision_at_3
            value: 14.995
          - type: precision_at_5
            value: 11.092
          - type: recall_at_1
            value: 23.355999999999998
          - type: recall_at_10
            value: 64.828
          - type: recall_at_100
            value: 89.888
          - type: recall_at_1000
            value: 98.181
          - type: recall_at_3
            value: 43.336000000000006
          - type: recall_at_5
            value: 53.274
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 94.97948016415869
          - type: f1
            value: 94.77285510790911
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 78.49749202006383
          - type: f1
            value: 59.36772995632707
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 77.64290517821117
          - type: f1
            value: 75.33296771580456
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 80.76664425016811
          - type: f1
            value: 80.79147962348141
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 35.158637354708034
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 32.39319499403552
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 32.19460802526735
          - type: mrr
            value: 33.39458959690712
      - task:
          type: Retrieval
        dataset:
          type: nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 7.225
          - type: map_at_10
            value: 15.609
          - type: map_at_100
            value: 20.067
          - type: map_at_1000
            value: 21.709999999999997
          - type: map_at_3
            value: 11.518
          - type: map_at_5
            value: 13.469999999999999
          - type: mrr_at_1
            value: 50.15500000000001
          - type: mrr_at_10
            value: 58.711
          - type: mrr_at_100
            value: 59.333000000000006
          - type: mrr_at_1000
            value: 59.362
          - type: mrr_at_3
            value: 56.65599999999999
          - type: mrr_at_5
            value: 57.972
          - type: ndcg_at_1
            value: 48.452
          - type: ndcg_at_10
            value: 38.845
          - type: ndcg_at_100
            value: 36.597
          - type: ndcg_at_1000
            value: 45.472
          - type: ndcg_at_3
            value: 43.947
          - type: ndcg_at_5
            value: 42.097
          - type: precision_at_1
            value: 49.845
          - type: precision_at_10
            value: 28.638
          - type: precision_at_100
            value: 9.229
          - type: precision_at_1000
            value: 2.234
          - type: precision_at_3
            value: 40.867
          - type: precision_at_5
            value: 36.285000000000004
          - type: recall_at_1
            value: 7.225
          - type: recall_at_10
            value: 19.272
          - type: recall_at_100
            value: 37.299
          - type: recall_at_1000
            value: 68.757
          - type: recall_at_3
            value: 12.350999999999999
          - type: recall_at_5
            value: 15.369
      - task:
          type: Retrieval
        dataset:
          type: nq
          name: MTEB NQ
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 34.453
          - type: map_at_10
            value: 50.748000000000005
          - type: map_at_100
            value: 51.666000000000004
          - type: map_at_1000
            value: 51.687000000000005
          - type: map_at_3
            value: 46.300000000000004
          - type: map_at_5
            value: 49.032
          - type: mrr_at_1
            value: 38.673
          - type: mrr_at_10
            value: 53.11
          - type: mrr_at_100
            value: 53.772
          - type: mrr_at_1000
            value: 53.784
          - type: mrr_at_3
            value: 49.483
          - type: mrr_at_5
            value: 51.751999999999995
          - type: ndcg_at_1
            value: 38.673
          - type: ndcg_at_10
            value: 58.60300000000001
          - type: ndcg_at_100
            value: 62.302
          - type: ndcg_at_1000
            value: 62.763999999999996
          - type: ndcg_at_3
            value: 50.366
          - type: ndcg_at_5
            value: 54.888999999999996
          - type: precision_at_1
            value: 38.673
          - type: precision_at_10
            value: 9.522
          - type: precision_at_100
            value: 1.162
          - type: precision_at_1000
            value: 0.121
          - type: precision_at_3
            value: 22.779
          - type: precision_at_5
            value: 16.256999999999998
          - type: recall_at_1
            value: 34.453
          - type: recall_at_10
            value: 80.074
          - type: recall_at_100
            value: 95.749
          - type: recall_at_1000
            value: 99.165
          - type: recall_at_3
            value: 58.897999999999996
          - type: recall_at_5
            value: 69.349
      - task:
          type: Retrieval
        dataset:
          type: quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 71.80499999999999
          - type: map_at_10
            value: 85.773
          - type: map_at_100
            value: 86.4
          - type: map_at_1000
            value: 86.414
          - type: map_at_3
            value: 82.919
          - type: map_at_5
            value: 84.70299999999999
          - type: mrr_at_1
            value: 82.69999999999999
          - type: mrr_at_10
            value: 88.592
          - type: mrr_at_100
            value: 88.682
          - type: mrr_at_1000
            value: 88.683
          - type: mrr_at_3
            value: 87.705
          - type: mrr_at_5
            value: 88.30799999999999
          - type: ndcg_at_1
            value: 82.69
          - type: ndcg_at_10
            value: 89.316
          - type: ndcg_at_100
            value: 90.45100000000001
          - type: ndcg_at_1000
            value: 90.525
          - type: ndcg_at_3
            value: 86.68
          - type: ndcg_at_5
            value: 88.113
          - type: precision_at_1
            value: 82.69
          - type: precision_at_10
            value: 13.507
          - type: precision_at_100
            value: 1.5350000000000001
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 37.927
          - type: precision_at_5
            value: 24.823999999999998
          - type: recall_at_1
            value: 71.80499999999999
          - type: recall_at_10
            value: 95.965
          - type: recall_at_100
            value: 99.70400000000001
          - type: recall_at_1000
            value: 99.992
          - type: recall_at_3
            value: 88.268
          - type: recall_at_5
            value: 92.45
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 60.24178219867024
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 64.99552099515469
      - task:
          type: Retrieval
        dataset:
          type: scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 5.4879999999999995
          - type: map_at_10
            value: 14.774999999999999
          - type: map_at_100
            value: 17.285
          - type: map_at_1000
            value: 17.648
          - type: map_at_3
            value: 10.4
          - type: map_at_5
            value: 12.552
          - type: mrr_at_1
            value: 27.1
          - type: mrr_at_10
            value: 39.251000000000005
          - type: mrr_at_100
            value: 40.335
          - type: mrr_at_1000
            value: 40.367
          - type: mrr_at_3
            value: 35.683
          - type: mrr_at_5
            value: 37.733
          - type: ndcg_at_1
            value: 27.1
          - type: ndcg_at_10
            value: 23.974
          - type: ndcg_at_100
            value: 33.161
          - type: ndcg_at_1000
            value: 38.853
          - type: ndcg_at_3
            value: 22.695999999999998
          - type: ndcg_at_5
            value: 19.881
          - type: precision_at_1
            value: 27.1
          - type: precision_at_10
            value: 12.479999999999999
          - type: precision_at_100
            value: 2.571
          - type: precision_at_1000
            value: 0.393
          - type: precision_at_3
            value: 21.367
          - type: precision_at_5
            value: 17.560000000000002
          - type: recall_at_1
            value: 5.4879999999999995
          - type: recall_at_10
            value: 25.290000000000003
          - type: recall_at_100
            value: 52.222
          - type: recall_at_1000
            value: 79.77300000000001
          - type: recall_at_3
            value: 13.001999999999999
          - type: recall_at_5
            value: 17.812
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 85.3407705934785
          - type: cos_sim_spearman
            value: 81.28145766913589
          - type: euclidean_pearson
            value: 82.69277819943873
          - type: euclidean_spearman
            value: 81.26097565088551
          - type: manhattan_pearson
            value: 82.73440374725746
          - type: manhattan_spearman
            value: 81.25376873901254
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 87.23415639286914
          - type: cos_sim_spearman
            value: 79.80147936079915
          - type: euclidean_pearson
            value: 84.324220218071
          - type: euclidean_spearman
            value: 79.71794784987208
          - type: manhattan_pearson
            value: 84.27523842345964
          - type: manhattan_spearman
            value: 79.58070329781553
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 85.90966234413125
          - type: cos_sim_spearman
            value: 87.10742652814713
          - type: euclidean_pearson
            value: 86.28297063322286
          - type: euclidean_spearman
            value: 87.09425001932226
          - type: manhattan_pearson
            value: 86.19204338411774
          - type: manhattan_spearman
            value: 87.02046826723424
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 84.12351399124411
          - type: cos_sim_spearman
            value: 83.32955357808568
          - type: euclidean_pearson
            value: 83.81222384305896
          - type: euclidean_spearman
            value: 83.1836394454507
          - type: manhattan_pearson
            value: 83.79162945392092
          - type: manhattan_spearman
            value: 83.14306058903364
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 86.9345194840047
          - type: cos_sim_spearman
            value: 88.47286320653176
          - type: euclidean_pearson
            value: 87.72825182191445
          - type: euclidean_spearman
            value: 88.33484195475864
          - type: manhattan_pearson
            value: 87.75121043906692
          - type: manhattan_spearman
            value: 88.36695329548576
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 84.80215370816441
          - type: cos_sim_spearman
            value: 86.44917331470305
          - type: euclidean_pearson
            value: 85.3458573021962
          - type: euclidean_spearman
            value: 86.24853627058414
          - type: manhattan_pearson
            value: 85.38477148579328
          - type: manhattan_spearman
            value: 86.28201585857053
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 87.20498617189688
          - type: cos_sim_spearman
            value: 87.61389142076317
          - type: euclidean_pearson
            value: 88.15430699740293
          - type: euclidean_spearman
            value: 87.35065666258774
          - type: manhattan_pearson
            value: 88.2994571119992
          - type: manhattan_spearman
            value: 87.60920178284005
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 68.27672577392406
          - type: cos_sim_spearman
            value: 68.31250175566586
          - type: euclidean_pearson
            value: 69.45016222616813
          - type: euclidean_spearman
            value: 67.93461301528046
          - type: manhattan_pearson
            value: 69.39774219739259
          - type: manhattan_spearman
            value: 67.78124856615536
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 85.31916148698113
          - type: cos_sim_spearman
            value: 87.45541524487057
          - type: euclidean_pearson
            value: 86.5845909408775
          - type: euclidean_spearman
            value: 87.2373331768082
          - type: manhattan_pearson
            value: 86.64467698948668
          - type: manhattan_spearman
            value: 87.26707857525533
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 88.0007930269447
          - type: mrr
            value: 96.52852594029063
      - task:
          type: Retrieval
        dataset:
          type: scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 60.99400000000001
          - type: map_at_10
            value: 70.923
          - type: map_at_100
            value: 71.299
          - type: map_at_1000
            value: 71.318
          - type: map_at_3
            value: 67.991
          - type: map_at_5
            value: 69.292
          - type: mrr_at_1
            value: 64.333
          - type: mrr_at_10
            value: 71.98400000000001
          - type: mrr_at_100
            value: 72.306
          - type: mrr_at_1000
            value: 72.32499999999999
          - type: mrr_at_3
            value: 69.833
          - type: mrr_at_5
            value: 70.783
          - type: ndcg_at_1
            value: 64.333
          - type: ndcg_at_10
            value: 75.729
          - type: ndcg_at_100
            value: 77.38199999999999
          - type: ndcg_at_1000
            value: 77.788
          - type: ndcg_at_3
            value: 70.774
          - type: ndcg_at_5
            value: 72.478
          - type: precision_at_1
            value: 64.333
          - type: precision_at_10
            value: 10.167
          - type: precision_at_100
            value: 1.0999999999999999
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 27.778000000000002
          - type: precision_at_5
            value: 17.867
          - type: recall_at_1
            value: 60.99400000000001
          - type: recall_at_10
            value: 89.48899999999999
          - type: recall_at_100
            value: 97
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 75.85
          - type: recall_at_5
            value: 80.328
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.86435643564356
          - type: cos_sim_ap
            value: 96.78001342960285
          - type: cos_sim_f1
            value: 93.07030854830552
          - type: cos_sim_precision
            value: 94.16581371545547
          - type: cos_sim_recall
            value: 92
          - type: dot_accuracy
            value: 99.74653465346535
          - type: dot_ap
            value: 92.80391251199522
          - type: dot_f1
            value: 87.36426456071075
          - type: dot_precision
            value: 86.25730994152046
          - type: dot_recall
            value: 88.5
          - type: euclidean_accuracy
            value: 99.86138613861387
          - type: euclidean_ap
            value: 96.77007810699926
          - type: euclidean_f1
            value: 92.95065458207452
          - type: euclidean_precision
            value: 93.6105476673428
          - type: euclidean_recall
            value: 92.30000000000001
          - type: manhattan_accuracy
            value: 99.86336633663366
          - type: manhattan_ap
            value: 96.78913160708261
          - type: manhattan_f1
            value: 93.03030303030305
          - type: manhattan_precision
            value: 93.9795918367347
          - type: manhattan_recall
            value: 92.10000000000001
          - type: max_accuracy
            value: 99.86435643564356
          - type: max_ap
            value: 96.78913160708261
          - type: max_f1
            value: 93.07030854830552
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 67.80798406371026
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 35.69251193913337
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 55.04250964616215
          - type: mrr
            value: 55.92283125371361
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 31.05492162235311
          - type: cos_sim_spearman
            value: 30.90473006515039
          - type: dot_pearson
            value: 26.85480454105073
          - type: dot_spearman
            value: 27.02880537417923
      - task:
          type: Retrieval
        dataset:
          type: trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.246
          - type: map_at_10
            value: 2.125
          - type: map_at_100
            value: 12.892999999999999
          - type: map_at_1000
            value: 31.513999999999996
          - type: map_at_3
            value: 0.695
          - type: map_at_5
            value: 1.133
          - type: mrr_at_1
            value: 92
          - type: mrr_at_10
            value: 95.667
          - type: mrr_at_100
            value: 95.667
          - type: mrr_at_1000
            value: 95.667
          - type: mrr_at_3
            value: 95.667
          - type: mrr_at_5
            value: 95.667
          - type: ndcg_at_1
            value: 88
          - type: ndcg_at_10
            value: 82.464
          - type: ndcg_at_100
            value: 63.351
          - type: ndcg_at_1000
            value: 57.129
          - type: ndcg_at_3
            value: 85.87700000000001
          - type: ndcg_at_5
            value: 86.042
          - type: precision_at_1
            value: 92
          - type: precision_at_10
            value: 86.2
          - type: precision_at_100
            value: 65.10000000000001
          - type: precision_at_1000
            value: 25.044
          - type: precision_at_3
            value: 89.333
          - type: precision_at_5
            value: 89.60000000000001
          - type: recall_at_1
            value: 0.246
          - type: recall_at_10
            value: 2.2880000000000003
          - type: recall_at_100
            value: 15.853
          - type: recall_at_1000
            value: 54.05
          - type: recall_at_3
            value: 0.72
          - type: recall_at_5
            value: 1.196
      - task:
          type: Retrieval
        dataset:
          type: webis-touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 3.322
          - type: map_at_10
            value: 11.673
          - type: map_at_100
            value: 18.655
          - type: map_at_1000
            value: 20.058999999999997
          - type: map_at_3
            value: 6.265
          - type: map_at_5
            value: 8.549
          - type: mrr_at_1
            value: 42.857
          - type: mrr_at_10
            value: 55.352999999999994
          - type: mrr_at_100
            value: 55.928999999999995
          - type: mrr_at_1000
            value: 55.928999999999995
          - type: mrr_at_3
            value: 50
          - type: mrr_at_5
            value: 53.571000000000005
          - type: ndcg_at_1
            value: 39.796
          - type: ndcg_at_10
            value: 28.225
          - type: ndcg_at_100
            value: 40.452
          - type: ndcg_at_1000
            value: 51.332
          - type: ndcg_at_3
            value: 32.308
          - type: ndcg_at_5
            value: 30.942999999999998
          - type: precision_at_1
            value: 42.857
          - type: precision_at_10
            value: 24.490000000000002
          - type: precision_at_100
            value: 8.366999999999999
          - type: precision_at_1000
            value: 1.5709999999999997
          - type: precision_at_3
            value: 32.653
          - type: precision_at_5
            value: 30.203999999999997
          - type: recall_at_1
            value: 3.322
          - type: recall_at_10
            value: 17.857
          - type: recall_at_100
            value: 51.169
          - type: recall_at_1000
            value: 85.382
          - type: recall_at_3
            value: 7.126
          - type: recall_at_5
            value: 11.186
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 72.1046
          - type: ap
            value: 14.84774372187047
          - type: f1
            value: 55.52709376912111
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 60.18958687040181
          - type: f1
            value: 60.53154943862625
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 54.61440440799667
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 87.34577099600644
          - type: cos_sim_ap
            value: 78.19613471607386
          - type: cos_sim_f1
            value: 71.30501144746884
          - type: cos_sim_precision
            value: 68.83595284872298
          - type: cos_sim_recall
            value: 73.95778364116094
          - type: dot_accuracy
            value: 82.89324670680098
          - type: dot_ap
            value: 63.02362697550343
          - type: dot_f1
            value: 59.69837587006961
          - type: dot_precision
            value: 53.2712215320911
          - type: dot_recall
            value: 67.8891820580475
          - type: euclidean_accuracy
            value: 87.24444179531503
          - type: euclidean_ap
            value: 78.38356749852895
          - type: euclidean_f1
            value: 71.42133265771471
          - type: euclidean_precision
            value: 68.68908382066277
          - type: euclidean_recall
            value: 74.37994722955145
          - type: manhattan_accuracy
            value: 87.24444179531503
          - type: manhattan_ap
            value: 78.27660966609476
          - type: manhattan_f1
            value: 71.42165173165415
          - type: manhattan_precision
            value: 66.00268576544315
          - type: manhattan_recall
            value: 77.81002638522428
          - type: max_accuracy
            value: 87.34577099600644
          - type: max_ap
            value: 78.38356749852895
          - type: max_f1
            value: 71.42165173165415
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 88.90829355377032
          - type: cos_sim_ap
            value: 85.79696678631824
          - type: cos_sim_f1
            value: 77.8494623655914
          - type: cos_sim_precision
            value: 76.32610786417105
          - type: cos_sim_recall
            value: 79.43486295041576
          - type: dot_accuracy
            value: 86.17223580548765
          - type: dot_ap
            value: 79.05804163697516
          - type: dot_f1
            value: 72.38855622089154
          - type: dot_precision
            value: 69.61467368121713
          - type: dot_recall
            value: 75.39267015706807
          - type: euclidean_accuracy
            value: 88.94128148406877
          - type: euclidean_ap
            value: 85.86615739743813
          - type: euclidean_f1
            value: 77.97001153402537
          - type: euclidean_precision
            value: 75.44099647202822
          - type: euclidean_recall
            value: 80.67446874037573
          - type: manhattan_accuracy
            value: 88.9781503473435
          - type: manhattan_ap
            value: 85.91093266751166
          - type: manhattan_f1
            value: 77.96835723791216
          - type: manhattan_precision
            value: 74.98577929465301
          - type: manhattan_recall
            value: 81.19802894979982
          - type: max_accuracy
            value: 88.9781503473435
          - type: max_ap
            value: 85.91093266751166
          - type: max_f1
            value: 77.97001153402537