Text Classification
Transformers
PyTorch
bert
Inference Endpoints
Files changed (4) hide show
  1. README.md +104 -0
  2. config.json +23 -0
  3. pytorch_model.bin +3 -0
  4. tokenizer.json +0 -0
README.md ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - de
4
+ - en
5
+ - es
6
+ - fr
7
+ ---
8
+
9
+ # Model Card for `passage-ranker-v1-XS-multilingual`
10
+
11
+ This model is a passage ranker developed by Sinequa. It produces a relevance score given a query-passage pair and is
12
+ used to order search results.
13
+
14
+ Model name: `passage-ranker-v1-XS-multilingual`
15
+
16
+ ## Supported Languages
17
+
18
+ The model was trained and tested in the following languages:
19
+
20
+ - English
21
+ - French
22
+ - German
23
+ - Spanish
24
+
25
+ ## Scores
26
+
27
+ | Metric | Value |
28
+ |:--------------------|------:|
29
+ | Relevance (NDCG@10) | 0.453 |
30
+
31
+ Note that the relevance score is computed as an average over 14 retrieval datasets (see
32
+ [details below](#evaluation-metrics)).
33
+
34
+ ## Inference Times
35
+
36
+ | GPU | Batch size 32 |
37
+ |:-----------|--------------:|
38
+ | NVIDIA A10 | 8 ms |
39
+ | NVIDIA T4 | 21 ms |
40
+
41
+ The inference times only measure the time the model takes to process a single batch, it does not include pre- or
42
+ post-processing steps like the tokenization.
43
+
44
+ ## Requirements
45
+
46
+ - Minimal Sinequa version: 11.10.0
47
+ - GPU memory usage: 300 MiB
48
+
49
+ Note that GPU memory usage only includes how much GPU memory the actual model consumes on an NVIDIA T4 GPU with a batch
50
+ size of 32. It does not include the fix amount of memory that is consumed by the ONNX Runtime upon initialization which
51
+ can be around 0.5 to 1 GiB depending on the used GPU.
52
+
53
+ ## Model Details
54
+
55
+ ### Overview
56
+
57
+ - Number of parameters: 16 million
58
+ - Base language model: Homegrown Sinequa BERT-Mini ([Paper](https://arxiv.org/abs/1908.08962)) pretrained in the four
59
+ supported languages
60
+ - Insensitive to casing and accents
61
+ - Training procedure: [MonoBERT](https://arxiv.org/abs/1901.04085)
62
+
63
+ ### Training Data
64
+
65
+ - MS MARCO Passage Ranking
66
+ ([Paper](https://arxiv.org/abs/1611.09268),
67
+ [Official Page](https://microsoft.github.io/msmarco/),
68
+ [English & translated datasets on the HF dataset hub](https://huggingface.co/datasets/unicamp-dl/mmarco))
69
+ - Original English dataset
70
+ - Translated datasets for the other three supported languages
71
+
72
+ ### Evaluation Metrics
73
+
74
+ To determine the relevance score, we averaged the results that we obtained when evaluating on the datasets of the
75
+ [BEIR benchmark](https://github.com/beir-cellar/beir). Note that all these datasets are in English.
76
+
77
+ | Dataset | NDCG@10 |
78
+ |:------------------|--------:|
79
+ | Average | 0.453 |
80
+ | | |
81
+ | Arguana | 0.516 |
82
+ | CLIMATE-FEVER | 0.159 |
83
+ | DBPedia Entity | 0.355 |
84
+ | FEVER | 0.729 |
85
+ | FiQA-2018 | 0.282 |
86
+ | HotpotQA | 0.688 |
87
+ | MS MARCO | 0.334 |
88
+ | NFCorpus | 0.341 |
89
+ | NQ | 0.438 |
90
+ | Quora | 0.726 |
91
+ | SCIDOCS | 0.143 |
92
+ | SciFact | 0.630 |
93
+ | TREC-COVID | 0.664 |
94
+ | Webis-Touche-2020 | 0.337 |
95
+
96
+ We evaluated the model on the datasets of the [MIRACL benchmark](https://github.com/project-miracl/miracl) to test its
97
+ multilingual capacities. Note that not all training languages are part of the benchmark, so we only report the metrics
98
+ for the existing languages.
99
+
100
+ | Language | NDCG@10 |
101
+ |:---------|--------:|
102
+ | French | 0.346 |
103
+ | German | 0.368 |
104
+ | Spanish | 0.416 |
config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForSequenceClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 256,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 1024,
12
+ "layer_norm_eps": 1e-12,
13
+ "max_position_embeddings": 512,
14
+ "model_type": "bert",
15
+ "num_attention_heads": 4,
16
+ "num_hidden_layers": 4,
17
+ "pad_token_id": 0,
18
+ "position_embedding_type": "absolute",
19
+ "transformers_version": "4.23.1",
20
+ "type_vocab_size": 2,
21
+ "use_cache": true,
22
+ "vocab_size": 50099
23
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d083b39c499b785ed651719c01735eeb0a820e9bebc9b9afbedf8381733aa04
3
+ size 64758087
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff