best_model-sst-2-16-42

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4301
  • Accuracy: 0.875

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 150

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 0.4423 0.7812
No log 2.0 2 0.4424 0.7812
No log 3.0 3 0.4425 0.7812
No log 4.0 4 0.4427 0.7812
No log 5.0 5 0.4430 0.7812
No log 6.0 6 0.4433 0.7812
No log 7.0 7 0.4437 0.7812
No log 8.0 8 0.4442 0.7812
No log 9.0 9 0.4448 0.7812
0.458 10.0 10 0.4454 0.7812
0.458 11.0 11 0.4461 0.7812
0.458 12.0 12 0.4467 0.7812
0.458 13.0 13 0.4475 0.7812
0.458 14.0 14 0.4482 0.7812
0.458 15.0 15 0.4489 0.7812
0.458 16.0 16 0.4497 0.7812
0.458 17.0 17 0.4506 0.7812
0.458 18.0 18 0.4517 0.7812
0.458 19.0 19 0.4528 0.7812
0.4251 20.0 20 0.4540 0.7812
0.4251 21.0 21 0.4553 0.7812
0.4251 22.0 22 0.4565 0.7812
0.4251 23.0 23 0.4574 0.7812
0.4251 24.0 24 0.4582 0.7812
0.4251 25.0 25 0.4589 0.7812
0.4251 26.0 26 0.4595 0.7812
0.4251 27.0 27 0.4600 0.7812
0.4251 28.0 28 0.4606 0.7812
0.4251 29.0 29 0.4608 0.7812
0.3723 30.0 30 0.4610 0.7812
0.3723 31.0 31 0.4612 0.7812
0.3723 32.0 32 0.4612 0.7812
0.3723 33.0 33 0.4611 0.7812
0.3723 34.0 34 0.4610 0.7812
0.3723 35.0 35 0.4609 0.7812
0.3723 36.0 36 0.4604 0.7812
0.3723 37.0 37 0.4601 0.7812
0.3723 38.0 38 0.4592 0.7812
0.3723 39.0 39 0.4583 0.7812
0.3304 40.0 40 0.4572 0.7812
0.3304 41.0 41 0.4568 0.7812
0.3304 42.0 42 0.4562 0.7812
0.3304 43.0 43 0.4557 0.7812
0.3304 44.0 44 0.4552 0.7812
0.3304 45.0 45 0.4543 0.7812
0.3304 46.0 46 0.4541 0.7812
0.3304 47.0 47 0.4536 0.7812
0.3304 48.0 48 0.4534 0.7812
0.3304 49.0 49 0.4528 0.7812
0.2724 50.0 50 0.4526 0.7812
0.2724 51.0 51 0.4533 0.7812
0.2724 52.0 52 0.4544 0.7812
0.2724 53.0 53 0.4554 0.7812
0.2724 54.0 54 0.4563 0.7812
0.2724 55.0 55 0.4570 0.7812
0.2724 56.0 56 0.4578 0.7812
0.2724 57.0 57 0.4587 0.7812
0.2724 58.0 58 0.4588 0.7812
0.2724 59.0 59 0.4580 0.7812
0.2089 60.0 60 0.4569 0.7812
0.2089 61.0 61 0.4553 0.7812
0.2089 62.0 62 0.4531 0.7812
0.2089 63.0 63 0.4509 0.7812
0.2089 64.0 64 0.4478 0.7812
0.2089 65.0 65 0.4449 0.7812
0.2089 66.0 66 0.4425 0.7812
0.2089 67.0 67 0.4414 0.7812
0.2089 68.0 68 0.4399 0.7812
0.2089 69.0 69 0.4391 0.7812
0.163 70.0 70 0.4382 0.7812
0.163 71.0 71 0.4366 0.7812
0.163 72.0 72 0.4356 0.7812
0.163 73.0 73 0.4344 0.7812
0.163 74.0 74 0.4331 0.7812
0.163 75.0 75 0.4320 0.7812
0.163 76.0 76 0.4310 0.7812
0.163 77.0 77 0.4294 0.7812
0.163 78.0 78 0.4285 0.7812
0.163 79.0 79 0.4273 0.7812
0.1282 80.0 80 0.4267 0.7812
0.1282 81.0 81 0.4262 0.7812
0.1282 82.0 82 0.4271 0.7812
0.1282 83.0 83 0.4275 0.7812
0.1282 84.0 84 0.4289 0.7812
0.1282 85.0 85 0.4295 0.7812
0.1282 86.0 86 0.4293 0.7812
0.1282 87.0 87 0.4284 0.7812
0.1282 88.0 88 0.4275 0.7812
0.1282 89.0 89 0.4263 0.7812
0.1021 90.0 90 0.4249 0.7812
0.1021 91.0 91 0.4233 0.7812
0.1021 92.0 92 0.4210 0.7812
0.1021 93.0 93 0.4188 0.7812
0.1021 94.0 94 0.4166 0.7812
0.1021 95.0 95 0.4162 0.7812
0.1021 96.0 96 0.4154 0.7812
0.1021 97.0 97 0.4139 0.7812
0.1021 98.0 98 0.4126 0.8125
0.1021 99.0 99 0.4117 0.8125
0.0862 100.0 100 0.4115 0.8125
0.0862 101.0 101 0.4119 0.8125
0.0862 102.0 102 0.4116 0.8125
0.0862 103.0 103 0.4119 0.8125
0.0862 104.0 104 0.4141 0.8125
0.0862 105.0 105 0.4156 0.8125
0.0862 106.0 106 0.4165 0.8438
0.0862 107.0 107 0.4170 0.8438
0.0862 108.0 108 0.4183 0.8438
0.0862 109.0 109 0.4200 0.8438
0.0708 110.0 110 0.4212 0.8438
0.0708 111.0 111 0.4216 0.8438
0.0708 112.0 112 0.4213 0.8438
0.0708 113.0 113 0.4205 0.8438
0.0708 114.0 114 0.4191 0.8438
0.0708 115.0 115 0.4180 0.8438
0.0708 116.0 116 0.4167 0.8438
0.0708 117.0 117 0.4154 0.8438
0.0708 118.0 118 0.4143 0.8438
0.0708 119.0 119 0.4125 0.8438
0.056 120.0 120 0.4109 0.8438
0.056 121.0 121 0.4090 0.8438
0.056 122.0 122 0.4092 0.8438
0.056 123.0 123 0.4093 0.8438
0.056 124.0 124 0.4094 0.8438
0.056 125.0 125 0.4095 0.8438
0.056 126.0 126 0.4096 0.8438
0.056 127.0 127 0.4103 0.8438
0.056 128.0 128 0.4109 0.8438
0.056 129.0 129 0.4111 0.8438
0.0436 130.0 130 0.4110 0.8438
0.0436 131.0 131 0.4114 0.8438
0.0436 132.0 132 0.4119 0.8438
0.0436 133.0 133 0.4121 0.8438
0.0436 134.0 134 0.4119 0.875
0.0436 135.0 135 0.4119 0.875
0.0436 136.0 136 0.4121 0.875
0.0436 137.0 137 0.4131 0.875
0.0436 138.0 138 0.4138 0.875
0.0436 139.0 139 0.4150 0.875
0.0326 140.0 140 0.4167 0.875
0.0326 141.0 141 0.4181 0.875
0.0326 142.0 142 0.4194 0.875
0.0326 143.0 143 0.4206 0.875
0.0326 144.0 144 0.4217 0.875
0.0326 145.0 145 0.4228 0.875
0.0326 146.0 146 0.4242 0.875
0.0326 147.0 147 0.4256 0.875
0.0326 148.0 148 0.4268 0.875
0.0326 149.0 149 0.4280 0.875
0.0247 150.0 150 0.4301 0.875

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.4.0
  • Tokenizers 0.13.3
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for simonycl/best_model-sst-2-16-42

Finetuned
(2369)
this model