best_model-sst-2-16-42
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4301
- Accuracy: 0.875
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 150
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 1 | 0.4423 | 0.7812 |
No log | 2.0 | 2 | 0.4424 | 0.7812 |
No log | 3.0 | 3 | 0.4425 | 0.7812 |
No log | 4.0 | 4 | 0.4427 | 0.7812 |
No log | 5.0 | 5 | 0.4430 | 0.7812 |
No log | 6.0 | 6 | 0.4433 | 0.7812 |
No log | 7.0 | 7 | 0.4437 | 0.7812 |
No log | 8.0 | 8 | 0.4442 | 0.7812 |
No log | 9.0 | 9 | 0.4448 | 0.7812 |
0.458 | 10.0 | 10 | 0.4454 | 0.7812 |
0.458 | 11.0 | 11 | 0.4461 | 0.7812 |
0.458 | 12.0 | 12 | 0.4467 | 0.7812 |
0.458 | 13.0 | 13 | 0.4475 | 0.7812 |
0.458 | 14.0 | 14 | 0.4482 | 0.7812 |
0.458 | 15.0 | 15 | 0.4489 | 0.7812 |
0.458 | 16.0 | 16 | 0.4497 | 0.7812 |
0.458 | 17.0 | 17 | 0.4506 | 0.7812 |
0.458 | 18.0 | 18 | 0.4517 | 0.7812 |
0.458 | 19.0 | 19 | 0.4528 | 0.7812 |
0.4251 | 20.0 | 20 | 0.4540 | 0.7812 |
0.4251 | 21.0 | 21 | 0.4553 | 0.7812 |
0.4251 | 22.0 | 22 | 0.4565 | 0.7812 |
0.4251 | 23.0 | 23 | 0.4574 | 0.7812 |
0.4251 | 24.0 | 24 | 0.4582 | 0.7812 |
0.4251 | 25.0 | 25 | 0.4589 | 0.7812 |
0.4251 | 26.0 | 26 | 0.4595 | 0.7812 |
0.4251 | 27.0 | 27 | 0.4600 | 0.7812 |
0.4251 | 28.0 | 28 | 0.4606 | 0.7812 |
0.4251 | 29.0 | 29 | 0.4608 | 0.7812 |
0.3723 | 30.0 | 30 | 0.4610 | 0.7812 |
0.3723 | 31.0 | 31 | 0.4612 | 0.7812 |
0.3723 | 32.0 | 32 | 0.4612 | 0.7812 |
0.3723 | 33.0 | 33 | 0.4611 | 0.7812 |
0.3723 | 34.0 | 34 | 0.4610 | 0.7812 |
0.3723 | 35.0 | 35 | 0.4609 | 0.7812 |
0.3723 | 36.0 | 36 | 0.4604 | 0.7812 |
0.3723 | 37.0 | 37 | 0.4601 | 0.7812 |
0.3723 | 38.0 | 38 | 0.4592 | 0.7812 |
0.3723 | 39.0 | 39 | 0.4583 | 0.7812 |
0.3304 | 40.0 | 40 | 0.4572 | 0.7812 |
0.3304 | 41.0 | 41 | 0.4568 | 0.7812 |
0.3304 | 42.0 | 42 | 0.4562 | 0.7812 |
0.3304 | 43.0 | 43 | 0.4557 | 0.7812 |
0.3304 | 44.0 | 44 | 0.4552 | 0.7812 |
0.3304 | 45.0 | 45 | 0.4543 | 0.7812 |
0.3304 | 46.0 | 46 | 0.4541 | 0.7812 |
0.3304 | 47.0 | 47 | 0.4536 | 0.7812 |
0.3304 | 48.0 | 48 | 0.4534 | 0.7812 |
0.3304 | 49.0 | 49 | 0.4528 | 0.7812 |
0.2724 | 50.0 | 50 | 0.4526 | 0.7812 |
0.2724 | 51.0 | 51 | 0.4533 | 0.7812 |
0.2724 | 52.0 | 52 | 0.4544 | 0.7812 |
0.2724 | 53.0 | 53 | 0.4554 | 0.7812 |
0.2724 | 54.0 | 54 | 0.4563 | 0.7812 |
0.2724 | 55.0 | 55 | 0.4570 | 0.7812 |
0.2724 | 56.0 | 56 | 0.4578 | 0.7812 |
0.2724 | 57.0 | 57 | 0.4587 | 0.7812 |
0.2724 | 58.0 | 58 | 0.4588 | 0.7812 |
0.2724 | 59.0 | 59 | 0.4580 | 0.7812 |
0.2089 | 60.0 | 60 | 0.4569 | 0.7812 |
0.2089 | 61.0 | 61 | 0.4553 | 0.7812 |
0.2089 | 62.0 | 62 | 0.4531 | 0.7812 |
0.2089 | 63.0 | 63 | 0.4509 | 0.7812 |
0.2089 | 64.0 | 64 | 0.4478 | 0.7812 |
0.2089 | 65.0 | 65 | 0.4449 | 0.7812 |
0.2089 | 66.0 | 66 | 0.4425 | 0.7812 |
0.2089 | 67.0 | 67 | 0.4414 | 0.7812 |
0.2089 | 68.0 | 68 | 0.4399 | 0.7812 |
0.2089 | 69.0 | 69 | 0.4391 | 0.7812 |
0.163 | 70.0 | 70 | 0.4382 | 0.7812 |
0.163 | 71.0 | 71 | 0.4366 | 0.7812 |
0.163 | 72.0 | 72 | 0.4356 | 0.7812 |
0.163 | 73.0 | 73 | 0.4344 | 0.7812 |
0.163 | 74.0 | 74 | 0.4331 | 0.7812 |
0.163 | 75.0 | 75 | 0.4320 | 0.7812 |
0.163 | 76.0 | 76 | 0.4310 | 0.7812 |
0.163 | 77.0 | 77 | 0.4294 | 0.7812 |
0.163 | 78.0 | 78 | 0.4285 | 0.7812 |
0.163 | 79.0 | 79 | 0.4273 | 0.7812 |
0.1282 | 80.0 | 80 | 0.4267 | 0.7812 |
0.1282 | 81.0 | 81 | 0.4262 | 0.7812 |
0.1282 | 82.0 | 82 | 0.4271 | 0.7812 |
0.1282 | 83.0 | 83 | 0.4275 | 0.7812 |
0.1282 | 84.0 | 84 | 0.4289 | 0.7812 |
0.1282 | 85.0 | 85 | 0.4295 | 0.7812 |
0.1282 | 86.0 | 86 | 0.4293 | 0.7812 |
0.1282 | 87.0 | 87 | 0.4284 | 0.7812 |
0.1282 | 88.0 | 88 | 0.4275 | 0.7812 |
0.1282 | 89.0 | 89 | 0.4263 | 0.7812 |
0.1021 | 90.0 | 90 | 0.4249 | 0.7812 |
0.1021 | 91.0 | 91 | 0.4233 | 0.7812 |
0.1021 | 92.0 | 92 | 0.4210 | 0.7812 |
0.1021 | 93.0 | 93 | 0.4188 | 0.7812 |
0.1021 | 94.0 | 94 | 0.4166 | 0.7812 |
0.1021 | 95.0 | 95 | 0.4162 | 0.7812 |
0.1021 | 96.0 | 96 | 0.4154 | 0.7812 |
0.1021 | 97.0 | 97 | 0.4139 | 0.7812 |
0.1021 | 98.0 | 98 | 0.4126 | 0.8125 |
0.1021 | 99.0 | 99 | 0.4117 | 0.8125 |
0.0862 | 100.0 | 100 | 0.4115 | 0.8125 |
0.0862 | 101.0 | 101 | 0.4119 | 0.8125 |
0.0862 | 102.0 | 102 | 0.4116 | 0.8125 |
0.0862 | 103.0 | 103 | 0.4119 | 0.8125 |
0.0862 | 104.0 | 104 | 0.4141 | 0.8125 |
0.0862 | 105.0 | 105 | 0.4156 | 0.8125 |
0.0862 | 106.0 | 106 | 0.4165 | 0.8438 |
0.0862 | 107.0 | 107 | 0.4170 | 0.8438 |
0.0862 | 108.0 | 108 | 0.4183 | 0.8438 |
0.0862 | 109.0 | 109 | 0.4200 | 0.8438 |
0.0708 | 110.0 | 110 | 0.4212 | 0.8438 |
0.0708 | 111.0 | 111 | 0.4216 | 0.8438 |
0.0708 | 112.0 | 112 | 0.4213 | 0.8438 |
0.0708 | 113.0 | 113 | 0.4205 | 0.8438 |
0.0708 | 114.0 | 114 | 0.4191 | 0.8438 |
0.0708 | 115.0 | 115 | 0.4180 | 0.8438 |
0.0708 | 116.0 | 116 | 0.4167 | 0.8438 |
0.0708 | 117.0 | 117 | 0.4154 | 0.8438 |
0.0708 | 118.0 | 118 | 0.4143 | 0.8438 |
0.0708 | 119.0 | 119 | 0.4125 | 0.8438 |
0.056 | 120.0 | 120 | 0.4109 | 0.8438 |
0.056 | 121.0 | 121 | 0.4090 | 0.8438 |
0.056 | 122.0 | 122 | 0.4092 | 0.8438 |
0.056 | 123.0 | 123 | 0.4093 | 0.8438 |
0.056 | 124.0 | 124 | 0.4094 | 0.8438 |
0.056 | 125.0 | 125 | 0.4095 | 0.8438 |
0.056 | 126.0 | 126 | 0.4096 | 0.8438 |
0.056 | 127.0 | 127 | 0.4103 | 0.8438 |
0.056 | 128.0 | 128 | 0.4109 | 0.8438 |
0.056 | 129.0 | 129 | 0.4111 | 0.8438 |
0.0436 | 130.0 | 130 | 0.4110 | 0.8438 |
0.0436 | 131.0 | 131 | 0.4114 | 0.8438 |
0.0436 | 132.0 | 132 | 0.4119 | 0.8438 |
0.0436 | 133.0 | 133 | 0.4121 | 0.8438 |
0.0436 | 134.0 | 134 | 0.4119 | 0.875 |
0.0436 | 135.0 | 135 | 0.4119 | 0.875 |
0.0436 | 136.0 | 136 | 0.4121 | 0.875 |
0.0436 | 137.0 | 137 | 0.4131 | 0.875 |
0.0436 | 138.0 | 138 | 0.4138 | 0.875 |
0.0436 | 139.0 | 139 | 0.4150 | 0.875 |
0.0326 | 140.0 | 140 | 0.4167 | 0.875 |
0.0326 | 141.0 | 141 | 0.4181 | 0.875 |
0.0326 | 142.0 | 142 | 0.4194 | 0.875 |
0.0326 | 143.0 | 143 | 0.4206 | 0.875 |
0.0326 | 144.0 | 144 | 0.4217 | 0.875 |
0.0326 | 145.0 | 145 | 0.4228 | 0.875 |
0.0326 | 146.0 | 146 | 0.4242 | 0.875 |
0.0326 | 147.0 | 147 | 0.4256 | 0.875 |
0.0326 | 148.0 | 148 | 0.4268 | 0.875 |
0.0326 | 149.0 | 149 | 0.4280 | 0.875 |
0.0247 | 150.0 | 150 | 0.4301 | 0.875 |
Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.4.0
- Tokenizers 0.13.3
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for simonycl/best_model-sst-2-16-42
Base model
google-bert/bert-base-uncased