simonycl's picture
update model card README.md
ac21521
metadata
license: apache-2.0
base_model: bert-large-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: bert-large-uncased-sst-2-32-13-smoothed
    results: []

bert-large-uncased-sst-2-32-13-smoothed

This model is a fine-tuned version of bert-large-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6595
  • Accuracy: 0.75

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 75
  • label_smoothing_factor: 0.45

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 2 0.8178 0.5156
No log 2.0 4 0.8133 0.5156
No log 3.0 6 0.8065 0.5156
No log 4.0 8 0.7961 0.5156
0.8123 5.0 10 0.7821 0.5156
0.8123 6.0 12 0.7655 0.5
0.8123 7.0 14 0.7460 0.5
0.8123 8.0 16 0.7247 0.5
0.8123 9.0 18 0.7034 0.5312
0.751 10.0 20 0.6892 0.5938
0.751 11.0 22 0.6808 0.6094
0.751 12.0 24 0.6761 0.6719
0.751 13.0 26 0.6715 0.75
0.751 14.0 28 0.6665 0.7812
0.6479 15.0 30 0.6624 0.75
0.6479 16.0 32 0.6615 0.7344
0.6479 17.0 34 0.6572 0.7344
0.6479 18.0 36 0.6529 0.7656
0.6479 19.0 38 0.6503 0.7969
0.5876 20.0 40 0.6499 0.7812
0.5876 21.0 42 0.6496 0.7656
0.5876 22.0 44 0.6502 0.7344
0.5876 23.0 46 0.6536 0.75
0.5876 24.0 48 0.6593 0.7344
0.5439 25.0 50 0.6605 0.7344
0.5439 26.0 52 0.6592 0.7344
0.5439 27.0 54 0.6578 0.75
0.5439 28.0 56 0.6575 0.75
0.5439 29.0 58 0.6571 0.7344
0.5429 30.0 60 0.6575 0.75
0.5429 31.0 62 0.6635 0.75
0.5429 32.0 64 0.6681 0.7344
0.5429 33.0 66 0.6705 0.7188
0.5429 34.0 68 0.6701 0.6875
0.5404 35.0 70 0.6664 0.7188
0.5404 36.0 72 0.6621 0.7344
0.5404 37.0 74 0.6599 0.7344
0.5404 38.0 76 0.6604 0.7344
0.5404 39.0 78 0.6637 0.7344
0.5403 40.0 80 0.6647 0.7344
0.5403 41.0 82 0.6641 0.7344
0.5403 42.0 84 0.6633 0.7344
0.5403 43.0 86 0.6663 0.7344
0.5403 44.0 88 0.6699 0.7344
0.5406 45.0 90 0.6684 0.7344
0.5406 46.0 92 0.6625 0.7344
0.5406 47.0 94 0.6582 0.75
0.5406 48.0 96 0.6549 0.75
0.5406 49.0 98 0.6523 0.7656
0.54 50.0 100 0.6523 0.75
0.54 51.0 102 0.6525 0.75
0.54 52.0 104 0.6531 0.75
0.54 53.0 106 0.6534 0.75
0.54 54.0 108 0.6539 0.75
0.5396 55.0 110 0.6553 0.7656
0.5396 56.0 112 0.6540 0.75
0.5396 57.0 114 0.6555 0.7656
0.5396 58.0 116 0.6565 0.7656
0.5396 59.0 118 0.6588 0.7656
0.5403 60.0 120 0.6609 0.75
0.5403 61.0 122 0.6621 0.7344
0.5403 62.0 124 0.6619 0.7344
0.5403 63.0 126 0.6614 0.7344
0.5403 64.0 128 0.6599 0.7344
0.5405 65.0 130 0.6586 0.75
0.5405 66.0 132 0.6583 0.7656
0.5405 67.0 134 0.6580 0.7656
0.5405 68.0 136 0.6582 0.75
0.5405 69.0 138 0.6586 0.75
0.5399 70.0 140 0.6591 0.75
0.5399 71.0 142 0.6592 0.75
0.5399 72.0 144 0.6592 0.75
0.5399 73.0 146 0.6594 0.75
0.5399 74.0 148 0.6594 0.75
0.5403 75.0 150 0.6595 0.75

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.4.0
  • Tokenizers 0.13.3