bert-base-uncased-sst-2-16-13
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5049
- Accuracy: 0.8125
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 150
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 1 | 0.7051 | 0.5312 |
No log | 2.0 | 2 | 0.7048 | 0.5312 |
No log | 3.0 | 3 | 0.7041 | 0.5312 |
No log | 4.0 | 4 | 0.7029 | 0.5312 |
No log | 5.0 | 5 | 0.7014 | 0.5625 |
No log | 6.0 | 6 | 0.6996 | 0.5625 |
No log | 7.0 | 7 | 0.6975 | 0.5625 |
No log | 8.0 | 8 | 0.6951 | 0.5625 |
No log | 9.0 | 9 | 0.6922 | 0.5625 |
0.7427 | 10.0 | 10 | 0.6891 | 0.5625 |
0.7427 | 11.0 | 11 | 0.6857 | 0.5625 |
0.7427 | 12.0 | 12 | 0.6820 | 0.5625 |
0.7427 | 13.0 | 13 | 0.6781 | 0.5625 |
0.7427 | 14.0 | 14 | 0.6740 | 0.5625 |
0.7427 | 15.0 | 15 | 0.6698 | 0.5312 |
0.7427 | 16.0 | 16 | 0.6658 | 0.5938 |
0.7427 | 17.0 | 17 | 0.6621 | 0.5625 |
0.7427 | 18.0 | 18 | 0.6585 | 0.5625 |
0.7427 | 19.0 | 19 | 0.6550 | 0.6562 |
0.6663 | 20.0 | 20 | 0.6516 | 0.6562 |
0.6663 | 21.0 | 21 | 0.6489 | 0.7188 |
0.6663 | 22.0 | 22 | 0.6471 | 0.7188 |
0.6663 | 23.0 | 23 | 0.6465 | 0.75 |
0.6663 | 24.0 | 24 | 0.6465 | 0.75 |
0.6663 | 25.0 | 25 | 0.6461 | 0.7188 |
0.6663 | 26.0 | 26 | 0.6450 | 0.7188 |
0.6663 | 27.0 | 27 | 0.6427 | 0.6875 |
0.6663 | 28.0 | 28 | 0.6394 | 0.6875 |
0.6663 | 29.0 | 29 | 0.6358 | 0.7188 |
0.5394 | 30.0 | 30 | 0.6319 | 0.75 |
0.5394 | 31.0 | 31 | 0.6279 | 0.75 |
0.5394 | 32.0 | 32 | 0.6244 | 0.7812 |
0.5394 | 33.0 | 33 | 0.6207 | 0.7812 |
0.5394 | 34.0 | 34 | 0.6169 | 0.7812 |
0.5394 | 35.0 | 35 | 0.6131 | 0.7812 |
0.5394 | 36.0 | 36 | 0.6096 | 0.7812 |
0.5394 | 37.0 | 37 | 0.6057 | 0.7812 |
0.5394 | 38.0 | 38 | 0.6028 | 0.7812 |
0.5394 | 39.0 | 39 | 0.6010 | 0.75 |
0.3922 | 40.0 | 40 | 0.5975 | 0.75 |
0.3922 | 41.0 | 41 | 0.5941 | 0.75 |
0.3922 | 42.0 | 42 | 0.5902 | 0.75 |
0.3922 | 43.0 | 43 | 0.5854 | 0.75 |
0.3922 | 44.0 | 44 | 0.5800 | 0.75 |
0.3922 | 45.0 | 45 | 0.5768 | 0.7188 |
0.3922 | 46.0 | 46 | 0.5747 | 0.7188 |
0.3922 | 47.0 | 47 | 0.5743 | 0.7188 |
0.3922 | 48.0 | 48 | 0.5765 | 0.7188 |
0.3922 | 49.0 | 49 | 0.5779 | 0.6875 |
0.2715 | 50.0 | 50 | 0.5813 | 0.7188 |
0.2715 | 51.0 | 51 | 0.5839 | 0.6875 |
0.2715 | 52.0 | 52 | 0.5857 | 0.7188 |
0.2715 | 53.0 | 53 | 0.5916 | 0.7188 |
0.2715 | 54.0 | 54 | 0.5986 | 0.75 |
0.2715 | 55.0 | 55 | 0.6033 | 0.75 |
0.2715 | 56.0 | 56 | 0.6016 | 0.75 |
0.2715 | 57.0 | 57 | 0.6004 | 0.75 |
0.2715 | 58.0 | 58 | 0.5928 | 0.75 |
0.2715 | 59.0 | 59 | 0.5860 | 0.7812 |
0.174 | 60.0 | 60 | 0.5795 | 0.75 |
0.174 | 61.0 | 61 | 0.5707 | 0.75 |
0.174 | 62.0 | 62 | 0.5629 | 0.7188 |
0.174 | 63.0 | 63 | 0.5578 | 0.6875 |
0.174 | 64.0 | 64 | 0.5535 | 0.7188 |
0.174 | 65.0 | 65 | 0.5498 | 0.7188 |
0.174 | 66.0 | 66 | 0.5468 | 0.7188 |
0.174 | 67.0 | 67 | 0.5436 | 0.7188 |
0.174 | 68.0 | 68 | 0.5404 | 0.7188 |
0.174 | 69.0 | 69 | 0.5373 | 0.7188 |
0.1107 | 70.0 | 70 | 0.5353 | 0.7188 |
0.1107 | 71.0 | 71 | 0.5327 | 0.7188 |
0.1107 | 72.0 | 72 | 0.5292 | 0.7188 |
0.1107 | 73.0 | 73 | 0.5243 | 0.75 |
0.1107 | 74.0 | 74 | 0.5187 | 0.75 |
0.1107 | 75.0 | 75 | 0.5131 | 0.75 |
0.1107 | 76.0 | 76 | 0.5081 | 0.75 |
0.1107 | 77.0 | 77 | 0.5036 | 0.75 |
0.1107 | 78.0 | 78 | 0.5005 | 0.75 |
0.1107 | 79.0 | 79 | 0.4982 | 0.7812 |
0.0742 | 80.0 | 80 | 0.4970 | 0.8438 |
0.0742 | 81.0 | 81 | 0.4958 | 0.8438 |
0.0742 | 82.0 | 82 | 0.4939 | 0.8438 |
0.0742 | 83.0 | 83 | 0.4908 | 0.8438 |
0.0742 | 84.0 | 84 | 0.4873 | 0.8125 |
0.0742 | 85.0 | 85 | 0.4840 | 0.8125 |
0.0742 | 86.0 | 86 | 0.4814 | 0.8125 |
0.0742 | 87.0 | 87 | 0.4790 | 0.8125 |
0.0742 | 88.0 | 88 | 0.4769 | 0.8125 |
0.0742 | 89.0 | 89 | 0.4750 | 0.8125 |
0.0494 | 90.0 | 90 | 0.4742 | 0.8125 |
0.0494 | 91.0 | 91 | 0.4737 | 0.8125 |
0.0494 | 92.0 | 92 | 0.4731 | 0.8125 |
0.0494 | 93.0 | 93 | 0.4726 | 0.8125 |
0.0494 | 94.0 | 94 | 0.4722 | 0.8125 |
0.0494 | 95.0 | 95 | 0.4720 | 0.8125 |
0.0494 | 96.0 | 96 | 0.4720 | 0.8125 |
0.0494 | 97.0 | 97 | 0.4715 | 0.8125 |
0.0494 | 98.0 | 98 | 0.4712 | 0.8125 |
0.0494 | 99.0 | 99 | 0.4710 | 0.8125 |
0.0331 | 100.0 | 100 | 0.4709 | 0.8125 |
0.0331 | 101.0 | 101 | 0.4711 | 0.8125 |
0.0331 | 102.0 | 102 | 0.4715 | 0.8125 |
0.0331 | 103.0 | 103 | 0.4725 | 0.8125 |
0.0331 | 104.0 | 104 | 0.4734 | 0.8125 |
0.0331 | 105.0 | 105 | 0.4742 | 0.8125 |
0.0331 | 106.0 | 106 | 0.4752 | 0.8125 |
0.0331 | 107.0 | 107 | 0.4761 | 0.8125 |
0.0331 | 108.0 | 108 | 0.4770 | 0.8125 |
0.0331 | 109.0 | 109 | 0.4780 | 0.8125 |
0.0246 | 110.0 | 110 | 0.4789 | 0.8125 |
0.0246 | 111.0 | 111 | 0.4804 | 0.8125 |
0.0246 | 112.0 | 112 | 0.4817 | 0.8125 |
0.0246 | 113.0 | 113 | 0.4829 | 0.8125 |
0.0246 | 114.0 | 114 | 0.4842 | 0.8125 |
0.0246 | 115.0 | 115 | 0.4851 | 0.8125 |
0.0246 | 116.0 | 116 | 0.4863 | 0.8125 |
0.0246 | 117.0 | 117 | 0.4880 | 0.8125 |
0.0246 | 118.0 | 118 | 0.4897 | 0.8125 |
0.0246 | 119.0 | 119 | 0.4913 | 0.8125 |
0.0191 | 120.0 | 120 | 0.4930 | 0.8125 |
0.0191 | 121.0 | 121 | 0.4945 | 0.8125 |
0.0191 | 122.0 | 122 | 0.4959 | 0.8125 |
0.0191 | 123.0 | 123 | 0.4971 | 0.8125 |
0.0191 | 124.0 | 124 | 0.4984 | 0.8125 |
0.0191 | 125.0 | 125 | 0.4995 | 0.8125 |
0.0191 | 126.0 | 126 | 0.5004 | 0.8125 |
0.0191 | 127.0 | 127 | 0.5014 | 0.8125 |
0.0191 | 128.0 | 128 | 0.5021 | 0.8125 |
0.0191 | 129.0 | 129 | 0.5027 | 0.8125 |
0.0163 | 130.0 | 130 | 0.5031 | 0.8125 |
0.0163 | 131.0 | 131 | 0.5031 | 0.8125 |
0.0163 | 132.0 | 132 | 0.5034 | 0.8125 |
0.0163 | 133.0 | 133 | 0.5035 | 0.8125 |
0.0163 | 134.0 | 134 | 0.5036 | 0.8125 |
0.0163 | 135.0 | 135 | 0.5036 | 0.8125 |
0.0163 | 136.0 | 136 | 0.5037 | 0.8125 |
0.0163 | 137.0 | 137 | 0.5038 | 0.8125 |
0.0163 | 138.0 | 138 | 0.5040 | 0.8125 |
0.0163 | 139.0 | 139 | 0.5043 | 0.8125 |
0.0147 | 140.0 | 140 | 0.5044 | 0.8125 |
0.0147 | 141.0 | 141 | 0.5046 | 0.8125 |
0.0147 | 142.0 | 142 | 0.5047 | 0.8125 |
0.0147 | 143.0 | 143 | 0.5049 | 0.8125 |
0.0147 | 144.0 | 144 | 0.5049 | 0.8125 |
0.0147 | 145.0 | 145 | 0.5049 | 0.8125 |
0.0147 | 146.0 | 146 | 0.5049 | 0.8125 |
0.0147 | 147.0 | 147 | 0.5049 | 0.8125 |
0.0147 | 148.0 | 148 | 0.5049 | 0.8125 |
0.0147 | 149.0 | 149 | 0.5049 | 0.8125 |
0.0138 | 150.0 | 150 | 0.5049 | 0.8125 |
Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.4.0
- Tokenizers 0.13.3
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for simonycl/bert-base-uncased-sst-2-16-13
Base model
google-bert/bert-base-uncased