simonl0909's picture
Librarian Bot: Add base_model information to model (#3)
c3f0671
metadata
language:
  - yue
license: apache-2.0
tags:
  - whisper-event
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - cer
base_model: openai/whisper-large-v2
model-index:
  - name: Whisper Large V2 Cantonese
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0
          type: mozilla-foundation/common_voice_11_0
          config: yue
          split: test
        metrics:
          - type: cer
            value: 6.7274
            name: Cer
      - task:
          type: automatic-speech-recognition
          name: Speech Recognition
        dataset:
          name: Common Voice zh-HK
          type: common_voice
          args: zh-HK
        metrics:
          - type: cer
            value: 6.7274
            name: Test CER

Whisper Large V2 Cantonese

This model is a fine-tuned version of openai/whisper-large-v2 on the mozilla-foundation/common_voice_11_0 yue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2807
  • Cer: 6.7274

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
0.0032 13.01 1000 0.2318 6.8569
0.002 26.01 2000 0.2404 7.1524
0.0001 39.02 3000 0.2807 6.7274
0.0001 53.01 4000 0.2912 6.7517
0.0 66.01 5000 0.2957 6.7638

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2