simonl0909's picture
Update README.md
e5290a9
|
raw
history blame
2.17 kB
metadata
language:
  - yue
license: apache-2.0
tags:
  - whisper-event
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - cer
model-index:
  - name: Whisper Large V2 Cantonese
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0
          type: mozilla-foundation/common_voice_11_0
          split: test
          config: yue
        metrics:
          - name: Cer
            type: cer
            value: 6.7274

Whisper Large V2 Cantonese

This model is a fine-tuned version of openai/whisper-large-v2 on the mozilla-foundation/common_voice_11_0 yue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2807
  • Cer: 6.7274

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
0.0032 13.01 1000 0.2318 6.8569
0.002 26.01 2000 0.2404 7.1524
0.0001 39.02 3000 0.2807 6.7274
0.0001 53.01 4000 0.2912 6.7517
0.0 66.01 5000 0.2957 6.7638

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2