SetFit with nickprock/sentence-bert-base-italian-uncased

This is a SetFit model that can be used for Text Classification. This SetFit model uses nickprock/sentence-bert-base-italian-uncased as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("simonepapa/setfit-baritoday-multilabel")
# Run inference
preds = model("Un'auto è finita, nel primo pomeriggio, sui paletti parapedonali del t5eatro petruzzelli, danneggiandoli: a guidare il mezzo, un uomo di 75 anni. Sul posto sono intervenute le pattuglie della Polizia Locale e un'autogru. Accertamenti in corso per stabilire la dinamica degli episodi. Il conducente sarà segnalato per richiesta di revisione accertamenti psicofisici e sanzionato per i danni causati.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 42 154.4615 1030

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 20
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0038 1 0.1775 -
0.1923 50 0.1375 -
0.3846 100 0.0755 -
0.5769 150 0.0521 -
0.7692 200 0.0456 -
0.9615 250 0.0446 -

Framework Versions

  • Python: 3.10.5
  • SetFit: 1.1.0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.42.2
  • PyTorch: 2.5.1+cu124
  • Datasets: 3.1.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
3
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for simonepapa/setfit-baritoday-multilabel

Finetuned
(1)
this model