SetFit with nickprock/sentence-bert-base-italian-uncased
This is a SetFit model that can be used for Text Classification. This SetFit model uses nickprock/sentence-bert-base-italian-uncased as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: nickprock/sentence-bert-base-italian-uncased
- Classification head: a OneVsRestClassifier instance
- Maximum Sequence Length: 512 tokens
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("simonepapa/setfit-baritoday-multilabel")
# Run inference
preds = model("Un'auto è finita, nel primo pomeriggio, sui paletti parapedonali del t5eatro petruzzelli, danneggiandoli: a guidare il mezzo, un uomo di 75 anni. Sul posto sono intervenute le pattuglie della Polizia Locale e un'autogru. Accertamenti in corso per stabilire la dinamica degli episodi. Il conducente sarà segnalato per richiesta di revisione accertamenti psicofisici e sanzionato per i danni causati.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 42 | 154.4615 | 1030 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0038 | 1 | 0.1775 | - |
0.1923 | 50 | 0.1375 | - |
0.3846 | 100 | 0.0755 | - |
0.5769 | 150 | 0.0521 | - |
0.7692 | 200 | 0.0456 | - |
0.9615 | 250 | 0.0446 | - |
Framework Versions
- Python: 3.10.5
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.42.2
- PyTorch: 2.5.1+cu124
- Datasets: 3.1.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 3
Inference API (serverless) has been turned off for this model.
Model tree for simonepapa/setfit-baritoday-multilabel
Base model
nickprock/sentence-bert-base-italian-uncased