silviacamplani/distilbert-finetuned-tapt-ner-ai

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.9093
  • Validation Loss: 0.9177
  • Train Precision: 0.3439
  • Train Recall: 0.3697
  • Train F1: 0.3563
  • Train Accuracy: 0.7697
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 350, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
  • training_precision: mixed_float16

Training results

Train Loss Validation Loss Train Precision Train Recall Train F1 Train Accuracy Epoch
2.5750 1.7754 0.0 0.0 0.0 0.6480 0
1.6567 1.4690 0.0 0.0 0.0 0.6480 1
1.3888 1.2847 0.0 0.0 0.0 0.6480 2
1.2569 1.1744 0.0526 0.0221 0.0312 0.6751 3
1.1536 1.0884 0.2088 0.1704 0.1876 0.7240 4
1.0722 1.0281 0.2865 0.2641 0.2748 0.7431 5
1.0077 0.9782 0.3151 0.3135 0.3143 0.7553 6
0.9582 0.9437 0.3254 0.3492 0.3369 0.7661 7
0.9268 0.9242 0.3381 0.3595 0.3485 0.7689 8
0.9093 0.9177 0.3439 0.3697 0.3563 0.7697 9

Framework versions

  • Transformers 4.20.1
  • TensorFlow 2.6.4
  • Datasets 2.1.0
  • Tokenizers 0.12.1
Downloads last month
5
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.