karimouda's picture
Update README.md
67b5d22 verified
|
raw
history blame
13.3 kB
---
base_model: silma-ai/silma-embeddding-matryoshka-0.1
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- loss:CosineSimilarityLoss
model-index:
- name: SentenceTransformer based on silma-ai/silma-embeddding-matryoshka-0.1
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
config: ar-ar
name: MTEB STS17 (ar-ar)
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: pearson_cosine
value: 0.8515496450525244
name: Pearson Cosine
- type: spearman_cosine
value: 0.8558624740720275
name: Spearman Cosine
- type: pearson_manhattan
value: 0.821963706969713
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8396900657477299
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8231208177674895
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8444168331737782
name: Spearman Euclidean
- type: pearson_dot
value: 0.8515496381581389
name: Pearson Dot
- type: spearman_dot
value: 0.8557531503465841
name: Spearman Dot
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
config: en-ar
name: MTEB STS17 (en-ar)
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: pearson_cosine
value: 0.4960250395119053
name: Pearson Cosine
- type: spearman_cosine
value: 0.4770240652715316
name: Spearman Cosine
- type: pearson_manhattan
value: 0.463401831917928
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.4468968000990917
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.4481739880481376
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.428311112429714
name: Spearman Euclidean
- type: pearson_dot
value: 0.49602504450181617
name: Pearson Dot
- type: spearman_dot
value: 0.4770240652715316
name: Spearman Dot
license: apache-2.0
language:
- ar
- en
---
# SILMA STS Arabic Embedding Model 0.1
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [silma-ai/silma-embeddding-matryoshka-0.1](https://huggingface.co/silma-ai/silma-embeddding-matryoshka-0.1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then load the model
```python
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
model = SentenceTransformer("silma-ai/silma-embeddding-sts-0.1")
```
### Samples
#### [+] Short Sentence Similarity
**Arabic**
```python
query = "الطقس اليوم مشمس"
sentence_1 = "الجو اليوم كان مشمسًا ورائعًا"
sentence_2 = "الطقس اليوم غائم"
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.42602288722991943
# sentence_2_similarity: 0.10798501968383789
# =======
```
**English**
```python
query = "The weather is sunny today"
sentence_1 = "The morning was bright and sunny"
sentence_2 = "it is too cloudy today"
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.5796191692352295
# sentence_2_similarity: 0.21948376297950745
# =======
```
#### [+] Long Sentence Similarity
**Arabic**
```python
query = "الكتاب يتحدث عن أهمية الذكاء الاصطناعي في تطوير المجتمعات الحديثة"
sentence_1 = "في هذا الكتاب، يناقش الكاتب كيف يمكن للتكنولوجيا أن تغير العالم"
sentence_2 = "الكاتب يتحدث عن أساليب الطبخ التقليدية في دول البحر الأبيض المتوسط"
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.5725120306015015
# sentence_2_similarity: 0.22617210447788239
# =======
```
**English**
```python
query = "China said on Saturday it would issue special bonds to help its sputtering economy, signalling a spending spree to bolster banks"
sentence_1 = "The Chinese government announced plans to release special bonds aimed at supporting its struggling economy and stabilizing the banking sector."
sentence_2 = "Several countries are preparing for a global technology summit to discuss advancements in bolster global banks."
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.6438770294189453
# sentence_2_similarity: 0.4720292389392853
# =======
```
#### [+] Question to Paragraph Matching
**Arabic**
```python
query = "ما هي فوائد ممارسة الرياضة؟"
sentence_1 = "ممارسة الرياضة بشكل منتظم تساعد على تحسين الصحة العامة واللياقة البدنية"
sentence_2 = "تعليم الأطفال في سن مبكرة يساعدهم على تطوير المهارات العقلية بسرعة"
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.6058318614959717
# sentence_2_similarity: 0.006831036880612373
# =======
```
**English**
```python
query = "What are the benefits of exercising?"
sentence_1 = "Regular exercise helps improve overall health and physical fitness"
sentence_2 = "Teaching children at an early age helps them develop cognitive skills quickly"
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.3593001365661621
# sentence_2_similarity: 0.06493218243122101
# =======
```
#### [+] Message to Intent-Name Mapping
**Arabic**
```python
query = "أرغب في حجز تذكرة طيران من دبي الى القاهرة يوم الثلاثاء القادم"
sentence_1 = "حجز رحلة"
sentence_2 = "إلغاء حجز"
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.4646468162536621
# sentence_2_similarity: 0.19563665986061096
# =======
```
**English**
```python
query = "Please send an email to all of the managers"
sentence_1 = "send email"
sentence_2 = "read inbox emails"
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.6485046744346619
# sentence_2_similarity: 0.43906497955322266
# =======
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `MTEB STS17 (ar-ar)` [source](https://huggingface.co/datasets/mteb/sts17-crosslingual-sts/viewer/ar-ar)
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8515 |
| **spearman_cosine** | **0.8559** |
| pearson_manhattan | 0.8220 |
| spearman_manhattan | 0.8397 |
| pearson_euclidean | 0.8231 |
| spearman_euclidean | 0.8444 |
| pearson_dot | 0.8515 |
| spearman_dot | 0.8557 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
This model was fine-tuned via 2 phases:
### Phase 1:
In phase `1`, we curated a dataset [silma-ai/silma-arabic-triplets-dataset-v1.0](https://huggingface.co/datasets/silma-ai/silma-arabic-triplets-dataset-v1.0) which
contains more than `2.25M` records of (anchor, positive and negative) Arabic/English samples.
Only the first `600` samples were taken to be the `eval` dataset, while the rest were used for fine-tuning.
Phase `1` produces a finetuned `Matryoshka` model based on [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) with the following hyperparameters:
- `per_device_train_batch_size`: 250
- `per_device_eval_batch_size`: 10
- `learning_rate`: 1e-05
- `num_train_epochs`: 3
- `bf16`: True
- `dataloader_drop_last`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
**[training script](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/matryoshka/matryoshka_sts.py)**
### Phase 2:
In phase `2`, we curated a dataset [silma-ai/silma-arabic-english-sts-dataset-v1.0](https://huggingface.co/datasets/silma-ai/silma-arabic-english-sts-dataset-v1.0) which
contains more than `30k` records of (sentence1, sentence2 and similarity-score) Arabic/English samples.
Only the first `100` samples were taken to be the `eval` dataset, while the rest was used for fine-tuning.
Phase `2` produces a finetuned `STS` model based on the model from phase `1`, with the following hyperparameters:
- `eval_strategy`: steps
- `per_device_train_batch_size`: 250
- `per_device_eval_batch_size`: 10
- `learning_rate`: 1e-06
- `num_train_epochs`: 10
- `bf16`: True
- `dataloader_drop_last`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
**[training script](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/sts/training_stsbenchmark_continue_training.py)**
</details>
### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.2.0
- Transformers: 4.45.2
- PyTorch: 2.3.1
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.20.1
### Citation:
#### BibTeX:
```bibtex
@misc{silma2024embedding,
author = {Abu Bakr Soliman, Karim Ouda, SILMA AI},
title = {SILMA Embedding STS 0.1},
year = {2024},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/silma-ai/silma-embeddding-sts-0.1}},
}
```
#### APA:
```apa
Abu Bakr Soliman, Karim Ouda, SILMA AI. (2024). SILMA Embedding STS 0.1 [Model]. Hugging Face. https://huggingface.co/silma-ai/silma-embeddding-sts-0.1
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->