File size: 25,375 Bytes
9eb5073 a186b0f a520977 9eb5073 a520977 9eb5073 a520977 a186b0f 9eb5073 a520977 a186b0f 9eb5073 a520977 a186b0f 06c686a 9eb5073 06c686a 9eb5073 036228c 9eb5073 3881202 9eb5073 06c686a 9eb5073 06c686a 9eb5073 06c686a 9eb5073 06c686a 9eb5073 06c686a 036228c 06c686a 9eb5073 06c686a 9eb5073 06c686a 9eb5073 06c686a 9eb5073 06c686a 9eb5073 06c686a 9eb5073 06c686a 9eb5073 06c686a 9eb5073 06c686a 9eb5073 06c686a 9eb5073 06c686a 92bd889 06c686a 9eb5073 06c686a 9eb5073 06c686a 9eb5073 06c686a 9eb5073 06c686a 9eb5073 06c686a 9eb5073 06c686a 9eb5073 036228c 06c686a 92bd889 06c686a 92bd889 06c686a 9eb5073 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 |
---
base_model: aubmindlab/bert-base-arabertv02
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- loss:CosineSimilarityLoss
- mteb
model-index:
- name: silma-ai/silma-embeddding-matryoshka-v0.1
results:
- dataset:
config: ar
name: MTEB MassiveIntentClassification (ar)
revision: 4672e20407010da34463acc759c162ca9734bca6
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 56.445864156018835
- type: f1
value: 53.58282538318122
- type: f1_weighted
value: 56.821808211639315
- type: main_score
value: 56.445864156018835
task:
type: Classification
- dataset:
config: en
name: MTEB MassiveIntentClassification (en)
revision: 4672e20407010da34463acc759c162ca9734bca6
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 47.40080699394754
- type: f1
value: 44.729286773524755
- type: f1_weighted
value: 47.83506683571795
- type: main_score
value: 47.40080699394754
task:
type: Classification
- dataset:
config: ar
name: MTEB MassiveIntentClassification (ar)
revision: 4672e20407010da34463acc759c162ca9734bca6
split: validation
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 56.97983275946876
- type: f1
value: 53.809263807080086
- type: f1_weighted
value: 57.14993215193604
- type: main_score
value: 56.97983275946876
task:
type: Classification
- dataset:
config: en
name: MTEB MassiveIntentClassification (en)
revision: 4672e20407010da34463acc759c162ca9734bca6
split: validation
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 47.683226758485006
- type: f1
value: 44.905317333393775
- type: f1_weighted
value: 48.051379514830195
- type: main_score
value: 47.683226758485006
task:
type: Classification
- dataset:
config: ar
name: MTEB MassiveScenarioClassification (ar)
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 63.31876260928042
- type: f1
value: 63.197056314678754
- type: f1_weighted
value: 62.7166315473092
- type: main_score
value: 63.31876260928042
task:
type: Classification
- dataset:
config: en
name: MTEB MassiveScenarioClassification (en)
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 53.35574983187627
- type: f1
value: 50.35837223252574
- type: f1_weighted
value: 54.11644042208904
- type: main_score
value: 53.35574983187627
task:
type: Classification
- dataset:
config: ar
name: MTEB MassiveScenarioClassification (ar)
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
split: validation
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 62.26758484997541
- type: f1
value: 62.477928166560325
- type: f1_weighted
value: 61.92238394647396
- type: main_score
value: 62.26758484997541
task:
type: Classification
- dataset:
config: en
name: MTEB MassiveScenarioClassification (en)
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
split: validation
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 52.62174126906049
- type: f1
value: 50.470501485026716
- type: f1_weighted
value: 53.16459392827557
- type: main_score
value: 52.62174126906049
task:
type: Classification
- dataset:
config: en-en
name: MTEB STS17 (en-en)
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cosine_pearson
value: 74.33941506827517
- type: cosine_spearman
value: 74.42197838273297
- type: euclidean_pearson
value: 75.33836191339782
- type: euclidean_spearman
value: 74.37385193453852
- type: main_score
value: 74.42197838273297
- type: manhattan_pearson
value: 75.41881517194568
- type: manhattan_spearman
value: 74.47237277057877
- type: pearson
value: 74.33941645999855
- type: spearman
value: 74.42197838273297
task:
type: STS
- dataset:
config: nl-en
name: MTEB STS17 (nl-en)
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cosine_pearson
value: 31.84872826199112
- type: cosine_spearman
value: 32.22496230755917
- type: euclidean_pearson
value: 21.830860533929688
- type: euclidean_spearman
value: 21.38205815348658
- type: main_score
value: 32.22496230755917
- type: manhattan_pearson
value: 21.852430479395576
- type: manhattan_spearman
value: 21.37848326556159
- type: pearson
value: 31.84872485436001
- type: spearman
value: 32.22496230755917
task:
type: STS
- dataset:
config: en-ar
name: MTEB STS17 (en-ar)
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cosine_pearson
value: 43.37529327788584
- type: cosine_spearman
value: 42.763149514327225
- type: euclidean_pearson
value: 39.625411905897394
- type: euclidean_spearman
value: 39.26727199746294
- type: main_score
value: 42.763149514327225
- type: manhattan_pearson
value: 40.49857681486655
- type: manhattan_spearman
value: 40.63669314166475
- type: pearson
value: 43.37529078998193
- type: spearman
value: 42.763149514327225
task:
type: STS
- dataset:
config: en-tr
name: MTEB STS17 (en-tr)
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cosine_pearson
value: 17.16722415938186
- type: cosine_spearman
value: 15.590330355526344
- type: euclidean_pearson
value: 4.430499555984906
- type: euclidean_spearman
value: 2.729050802084264
- type: main_score
value: 15.590330355526344
- type: manhattan_pearson
value: 2.805408490135879
- type: manhattan_spearman
value: 1.5237347692119627
- type: pearson
value: 17.167228709176676
- type: spearman
value: 15.590330355526344
task:
type: STS
- dataset:
config: fr-en
name: MTEB STS17 (fr-en)
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cosine_pearson
value: 36.093945717347395
- type: cosine_spearman
value: 37.33997345407934
- type: euclidean_pearson
value: 23.156103022485055
- type: euclidean_spearman
value: 20.62925594786342
- type: main_score
value: 37.33997345407934
- type: manhattan_pearson
value: 22.035024322719813
- type: manhattan_spearman
value: 19.147522562438795
- type: pearson
value: 36.09395175426761
- type: spearman
value: 37.33997345407934
task:
type: STS
- dataset:
config: en-de
name: MTEB STS17 (en-de)
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cosine_pearson
value: 29.064411455563
- type: cosine_spearman
value: 29.232781114344697
- type: euclidean_pearson
value: 16.90458086330736
- type: euclidean_spearman
value: 17.462020565289887
- type: main_score
value: 29.232781114344697
- type: manhattan_pearson
value: 16.882446230243286
- type: manhattan_spearman
value: 17.06144091941576
- type: pearson
value: 29.06441922605839
- type: spearman
value: 29.232781114344697
task:
type: STS
- dataset:
config: es-en
name: MTEB STS17 (es-en)
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cosine_pearson
value: 27.686316587339473
- type: cosine_spearman
value: 28.650995973102205
- type: euclidean_pearson
value: 12.954885279630565
- type: euclidean_spearman
value: 11.970815927480198
- type: main_score
value: 28.650995973102205
- type: manhattan_pearson
value: 12.079730127474948
- type: manhattan_spearman
value: 10.606967901984147
- type: pearson
value: 27.68631836666537
- type: spearman
value: 28.650995973102205
task:
type: STS
- dataset:
config: ar-ar
name: MTEB STS17 (ar-ar)
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cosine_pearson
value: 84.12612492708037
- type: cosine_spearman
value: 84.24703763883515
- type: euclidean_pearson
value: 81.38085140113648
- type: euclidean_spearman
value: 83.17403450502965
- type: main_score
value: 84.24703763883515
- type: manhattan_pearson
value: 81.18466522597414
- type: manhattan_spearman
value: 82.61184409962614
- type: pearson
value: 84.12612546419625
- type: spearman
value: 84.25077492152536
task:
type: STS
- dataset:
config: it-en
name: MTEB STS17 (it-en)
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cosine_pearson
value: 27.697680546701868
- type: cosine_spearman
value: 25.19277336255784
- type: euclidean_pearson
value: 13.964798090314115
- type: euclidean_spearman
value: 10.512169361528596
- type: main_score
value: 25.19277336255784
- type: manhattan_pearson
value: 13.537525485694433
- type: manhattan_spearman
value: 10.334001560105834
- type: pearson
value: 27.697681880242325
- type: spearman
value: 25.19277336255784
task:
type: STS
- dataset:
config: de-en
name: MTEB STS22.v2 (de-en)
revision: d31f33a128469b20e357535c39b82fb3c3f6f2bd
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cosine_pearson
value: 32.87548760760924
- type: cosine_spearman
value: 30.69782036694315
- type: euclidean_pearson
value: 29.925045225262142
- type: euclidean_spearman
value: 34.076021250318334
- type: main_score
value: 30.69782036694315
- type: manhattan_pearson
value: 30.815090565180945
- type: manhattan_spearman
value: 34.91615861045259
- type: pearson
value: 32.8754813614174
- type: spearman
value: 30.69782036694315
task:
type: STS
- dataset:
config: zh-en
name: MTEB STS22.v2 (zh-en)
revision: d31f33a128469b20e357535c39b82fb3c3f6f2bd
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cosine_pearson
value: 23.93269292232737
- type: cosine_spearman
value: 16.781461291066496
- type: euclidean_pearson
value: 20.87679825681155
- type: euclidean_spearman
value: 13.764510796592536
- type: main_score
value: 16.781461291066496
- type: manhattan_pearson
value: 23.416430850444588
- type: manhattan_spearman
value: 17.10405713909058
- type: pearson
value: 23.932682034899777
- type: spearman
value: 16.781461291066496
task:
type: STS
- dataset:
config: ar
name: MTEB STS22.v2 (ar)
revision: d31f33a128469b20e357535c39b82fb3c3f6f2bd
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cosine_pearson
value: 51.73784691362425
- type: cosine_spearman
value: 60.01035490847343
- type: euclidean_pearson
value: 52.717195602630305
- type: euclidean_spearman
value: 60.22164097529916
- type: main_score
value: 60.01035490847343
- type: manhattan_pearson
value: 53.04979941729716
- type: manhattan_spearman
value: 60.393100473647706
- type: pearson
value: 51.73784381247053
- type: spearman
value: 60.020906672817276
task:
type: STS
- dataset:
config: es-en
name: MTEB STS22.v2 (es-en)
revision: d31f33a128469b20e357535c39b82fb3c3f6f2bd
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cosine_pearson
value: 47.917244237624864
- type: cosine_spearman
value: 53.23173373821509
- type: euclidean_pearson
value: 48.172861539004636
- type: euclidean_spearman
value: 53.32970069145014
- type: main_score
value: 53.23173373821509
- type: manhattan_pearson
value: 48.163716825216646
- type: manhattan_spearman
value: 53.77963871495307
- type: pearson
value: 47.91724405724847
- type: spearman
value: 53.23173373821509
task:
type: STS
- dataset:
config: pl-en
name: MTEB STS22.v2 (pl-en)
revision: d31f33a128469b20e357535c39b82fb3c3f6f2bd
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cosine_pearson
value: 43.66748993183993
- type: cosine_spearman
value: 38.518248671828594
- type: euclidean_pearson
value: 50.475058499541134
- type: euclidean_spearman
value: 44.76070858743843
- type: main_score
value: 38.518248671828594
- type: manhattan_pearson
value: 50.576185727010014
- type: manhattan_spearman
value: 45.5306304403841
- type: pearson
value: 43.66750472144702
- type: spearman
value: 38.518248671828594
task:
type: STS
- dataset:
config: en
name: MTEB STS22.v2 (en)
revision: d31f33a128469b20e357535c39b82fb3c3f6f2bd
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cosine_pearson
value: 56.41373213565263
- type: cosine_spearman
value: 59.03774516602592
- type: euclidean_pearson
value: 54.173092638047294
- type: euclidean_spearman
value: 59.130444355085885
- type: main_score
value: 59.03774516602592
- type: manhattan_pearson
value: 54.18950361517434
- type: manhattan_spearman
value: 58.78927227383971
- type: pearson
value: 56.413733329868045
- type: spearman
value: 59.03774516602592
task:
type: STS
license: apache-2.0
language:
- ar
- en
---
# SILMA Arabic Matryoshka Embedding Model 0.1
The **SILMA Arabic Matryoshka Embedding Model 0.1** is an advanced Arabic text embedding model designed to produce powerful, contextually rich representations of text,
facilitating a wide range of applications, from semantic search to document classification.
This model leverages the innovative **Matryoshka** Embedding technique which can be used in different dimensions to optimize the speed, storage, and accuracy trade-offs.
## Usage
### Direct Usage (Sentence Transformers)
First, install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then load the model
```python
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
import pandas as pd
model_name = "silma-ai/silma-embeddding-matryoshka-0.1"
model = SentenceTransformer(model_name)
```
### Samples
Using Matryoshka, you can specify the first `(n)` dimensions to represent each text.
In the following samples, you can check how each dimension affects the `cosine similarity` between a query and the two inputs.
You can notice the in most cases, even too low dimension (i.e. 8) can produce acceptable semantic similarity scores.
#### [+] Short Sentence Similarity
```python
query = "الطقس اليوم مشمس"
sentence_1 = "الجو اليوم كان مشمسًا ورائعًا"
sentence_2 = "الطقس اليوم غائم"
scores = []
for dim in [768, 256, 48, 16, 8]:
query_embedding = model.encode(query)[:dim]
sent1_score = cos_sim(query_embedding, model.encode(sentence_1)[:dim])[0][0].tolist()
sent2_score = cos_sim(query_embedding, model.encode(sentence_2)[:dim])[0][0].tolist()
scores.append({
"dim": dim,
"valid_top": sent1_score > sent2_score,
"sent1_score": sent1_score,
"sent2_score": sent2_score,
})
scores_df = pd.DataFrame(scores)
print(scores_df.to_markdown(index=False))
# | dim | valid_top | sent1_score | sent2_score |
# |------:|:------------|--------------:|--------------:|
# | 768 | True | 0.479942 | 0.233572 |
# | 256 | True | 0.509289 | 0.208452 |
# | 48 | True | 0.598825 | 0.191677 |
# | 16 | True | 0.917707 | 0.458854 |
# | 8 | True | 0.948563 | 0.675662 |
```
#### [+] Long Sentence Similarity
```python
query = "الكتاب يتحدث عن أهمية الذكاء الاصطناعي في تطوير المجتمعات الحديثة"
sentence_1 = "في هذا الكتاب، يناقش الكاتب كيف يمكن للتكنولوجيا أن تغير العالم"
sentence_2 = "الكاتب يتحدث عن أساليب الطبخ التقليدية في دول البحر الأبيض المتوسط"
scores = []
for dim in [768, 256, 48, 16, 8]:
query_embedding = model.encode(query)[:dim]
sent1_score = cos_sim(query_embedding, model.encode(sentence_1)[:dim])[0][0].tolist()
sent2_score = cos_sim(query_embedding, model.encode(sentence_2)[:dim])[0][0].tolist()
scores.append({
"dim": dim,
"valid_top": sent1_score > sent2_score,
"sent1_score": sent1_score,
"sent2_score": sent2_score,
})
scores_df = pd.DataFrame(scores)
print(scores_df.to_markdown(index=False))
# | dim | valid_top | sent1_score | sent2_score |
# |------:|:------------|--------------:|--------------:|
# | 768 | True | 0.637418 | 0.262693 |
# | 256 | True | 0.614761 | 0.268267 |
# | 48 | True | 0.758887 | 0.384649 |
# | 16 | True | 0.885737 | 0.204213 |
# | 8 | True | 0.918684 | 0.146478 |
```
#### [+] Question to Paragraph Matching
```python
query = "ما هي فوائد ممارسة الرياضة؟"
sentence_1 = "ممارسة الرياضة بشكل منتظم تساعد على تحسين الصحة العامة واللياقة البدنية"
sentence_2 = "تعليم الأطفال في سن مبكرة يساعدهم على تطوير المهارات العقلية بسرعة"
scores = []
for dim in [768, 256, 48, 16, 8]:
query_embedding = model.encode(query)[:dim]
sent1_score = cos_sim(query_embedding, model.encode(sentence_1)[:dim])[0][0].tolist()
sent2_score = cos_sim(query_embedding, model.encode(sentence_2)[:dim])[0][0].tolist()
scores.append({
"dim": dim,
"valid_top": sent1_score > sent2_score,
"sent1_score": sent1_score,
"sent2_score": sent2_score,
})
scores_df = pd.DataFrame(scores)
print(scores_df.to_markdown(index=False))
# | dim | valid_top | sent1_score | sent2_score |
# |------:|:------------|--------------:|--------------:|
# | 768 | True | 0.520329 | 0.00295128 |
# | 256 | True | 0.556088 | -0.017764 |
# | 48 | True | 0.586194 | -0.110691 |
# | 16 | True | 0.606462 | -0.331682 |
# | 8 | True | 0.689649 | -0.359202 |
```
#### [+] Message to Intent-Name Mapping
```python
query = "أرغب في حجز تذكرة طيران من دبي الى القاهرة يوم الثلاثاء القادم"
sentence_1 = "حجز رحلة"
sentence_2 = "إلغاء حجز"
scores = []
for dim in [768, 256, 48, 16, 8]:
query_embedding = model.encode(query)[:dim]
sent1_score = cos_sim(query_embedding, model.encode(sentence_1)[:dim])[0][0].tolist()
sent2_score = cos_sim(query_embedding, model.encode(sentence_2)[:dim])[0][0].tolist()
scores.append({
"dim": dim,
"valid_top": sent1_score > sent2_score,
"sent1_score": sent1_score,
"sent2_score": sent2_score,
})
scores_df = pd.DataFrame(scores)
print(scores_df.to_markdown(index=False))
# | dim | valid_top | sent1_score | sent2_score |
# |------:|:------------|--------------:|--------------:|
# | 768 | True | 0.476535 | 0.221451 |
# | 256 | True | 0.392701 | 0.224967 |
# | 48 | True | 0.316223 | 0.0210683 |
# | 16 | False | -0.0242871 | 0.0250766 |
# | 8 | True | -0.215241 | -0.258904 |
```
## Training Details
We curated a dataset [silma-ai/silma-arabic-triplets-dataset-v1.0](https://huggingface.co/datasets/silma-ai/silma-arabic-triplets-dataset-v1.0) which
contains more than `2.25M` records of (anchor, positive and negative) Arabic/English samples.
Only the first `600` samples were taken to be the `eval` dataset, while the rest were used for fine-tuning.
This produced a finetuned `Matryoshka` model based on [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) with the following hyperparameters:
- `per_device_train_batch_size`: 250
- `per_device_eval_batch_size`: 10
- `learning_rate`: 1e-05
- `num_train_epochs`: 3
- `bf16`: True
- `dataloader_drop_last`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
**[training script](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/matryoshka/matryoshka_sts.py)**
### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.2.0
- Transformers: 4.45.2
- PyTorch: 2.3.1
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.20.1
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
### Citation:
#### BibTeX:
```bibtex
@misc{silma2024embedding,
author = {Abu Bakr Soliman, Karim Ouda, SILMA AI},
title = {SILMA Embedding Matryoshka 0.1},
year = {2024},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/silma-ai/silma-embeddding-matryoshka-0.1}},
}
```
#### APA:
```apa
Abu Bakr Soliman, Karim Ouda, SILMA AI. (2024). SILMA Embedding Matryoshka STS 0.1 [Model]. Hugging Face. https://huggingface.co/silma-ai/silma-embeddding-matryoshka-0.1
```
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |