Update README.md
Browse files
README.md
CHANGED
@@ -91,13 +91,13 @@ model-index:
|
|
91 |
value: 0.42763149514327226
|
92 |
name: Spearman Dot
|
93 |
license: apache-2.0
|
|
|
|
|
|
|
94 |
---
|
95 |
|
96 |
-
#
|
97 |
|
98 |
-
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
99 |
-
|
100 |
-
## Model Details
|
101 |
|
102 |
### Model Description
|
103 |
- **Model Type:** Sentence Transformer
|
@@ -105,15 +105,6 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [a
|
|
105 |
- **Maximum Sequence Length:** 512 tokens
|
106 |
- **Output Dimensionality:** 768 tokens
|
107 |
- **Similarity Function:** Cosine Similarity
|
108 |
-
<!-- - **Training Dataset:** Unknown -->
|
109 |
-
<!-- - **Language:** Unknown -->
|
110 |
-
<!-- - **License:** Unknown -->
|
111 |
-
|
112 |
-
### Model Sources
|
113 |
-
|
114 |
-
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
115 |
-
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
116 |
-
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
117 |
|
118 |
### Full Model Architecture
|
119 |
|
@@ -123,153 +114,187 @@ SentenceTransformer(
|
|
123 |
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
124 |
)
|
125 |
```
|
126 |
-
|
127 |
## Usage
|
128 |
|
129 |
### Direct Usage (Sentence Transformers)
|
130 |
|
131 |
-
First install the Sentence Transformers library:
|
132 |
|
133 |
```bash
|
134 |
pip install -U sentence-transformers
|
135 |
```
|
136 |
|
137 |
-
Then
|
|
|
138 |
```python
|
139 |
from sentence_transformers import SentenceTransformer
|
|
|
|
|
140 |
|
141 |
-
|
142 |
-
model = SentenceTransformer(
|
143 |
-
# Run inference
|
144 |
-
sentences = [
|
145 |
-
"And the piece of art he bought at the yard sale is hanging in his classroom; he's a teacher now.",
|
146 |
-
'أما اللوحات التي أشتراها منّي فهي معلّقة الآن في غرفة الصف خاصّته؛ فقد أصبح مدرّساً.',
|
147 |
-
'تدريجيا، أصبحت هذه العصافير بمثابة معلمين له.',
|
148 |
-
]
|
149 |
-
embeddings = model.encode(sentences)
|
150 |
-
print(embeddings.shape)
|
151 |
-
# [3, 768]
|
152 |
-
|
153 |
-
# Get the similarity scores for the embeddings
|
154 |
-
similarities = model.similarity(embeddings, embeddings)
|
155 |
-
print(similarities.shape)
|
156 |
-
# [3, 3]
|
157 |
```
|
158 |
|
159 |
-
|
160 |
-
### Direct Usage (Transformers)
|
161 |
|
162 |
-
|
163 |
|
164 |
-
|
165 |
-
-->
|
166 |
|
167 |
-
|
168 |
-
|
|
|
|
|
169 |
|
170 |
-
|
|
|
171 |
|
172 |
-
|
173 |
|
174 |
-
|
175 |
-
|
176 |
|
177 |
-
|
178 |
-
|
|
|
|
|
|
|
|
|
179 |
|
180 |
-
|
181 |
-
|
182 |
|
183 |
-
|
184 |
-
|
|
|
|
|
|
|
|
|
|
|
185 |
|
186 |
-
|
187 |
-
-->
|
188 |
|
189 |
-
|
190 |
-
### Recommendations
|
191 |
|
192 |
-
|
193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
## Training Details
|
196 |
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
205 |
-
| type | string | string | string |
|
206 |
-
| details | <ul><li>min: 4 tokens</li><li>mean: 19.51 tokens</li><li>max: 139 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 12.47 tokens</li><li>max: 59 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 12.13 tokens</li><li>max: 72 tokens</li></ul> |
|
207 |
-
* Samples:
|
208 |
-
| anchor | positive | negative |
|
209 |
-
|:-------------------------------------------------------------------|:------------------------------------------------|:--------------------------------------------------------|
|
210 |
-
| <code>كيف أصنع صاروخاً؟</code> | <code>كيف أصنع صاروخاً صناعياً؟</code> | <code>كيف أصنع أول روبوت لي؟</code> |
|
211 |
-
| <code>فتاة شابة تجلس على طاولة مع وعاء على رأسها</code> | <code>فتاة صغيرة لديها وعاء على رأسها</code> | <code>رجل يأكل الحبوب في سيارته</code> |
|
212 |
-
| <code>كيف يمكنني الانضمام إلى الجيش الهندي بعد البكالوريوس؟</code> | <code>كيف تنضم للجيش الهندي بعد الهندسة؟</code> | <code>كيف لي أن أعرف ماذا أريد أن أفعل في حياتي؟</code> |
|
213 |
-
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
214 |
-
```json
|
215 |
-
{
|
216 |
-
"loss": "MultipleNegativesRankingLoss",
|
217 |
-
"matryoshka_dims": [
|
218 |
-
768,
|
219 |
-
512
|
220 |
-
],
|
221 |
-
"matryoshka_weights": [
|
222 |
-
1,
|
223 |
-
1
|
224 |
-
],
|
225 |
-
"n_dims_per_step": -1
|
226 |
-
}
|
227 |
-
```
|
228 |
-
|
229 |
-
### Evaluation Dataset
|
230 |
-
|
231 |
-
#### Unnamed Dataset
|
232 |
-
|
233 |
-
|
234 |
-
* Size: 600 evaluation samples
|
235 |
-
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
236 |
-
* Approximate statistics based on the first 600 samples:
|
237 |
-
| | anchor | positive | negative |
|
238 |
-
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
239 |
-
| type | string | string | string |
|
240 |
-
| details | <ul><li>min: 4 tokens</li><li>mean: 19.5 tokens</li><li>max: 146 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 12.67 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 12.15 tokens</li><li>max: 41 tokens</li></ul> |
|
241 |
-
* Samples:
|
242 |
-
| anchor | positive | negative |
|
243 |
-
|:-------------------------------------------------------------|:------------------------------------------------|:-----------------------------------------------------------------|
|
244 |
-
| <code>And this explanation represents great progress.</code> | <code>وهذا التفسير يمثل تقدماً عظيماً</code> | <code>وأظهرت هذا الإتجاه المذهل.</code> |
|
245 |
-
| <code>ثلاثة رجال يلعبون كرة السلة</code> | <code>ثلاثة رجال يلعبون لعبة كرة السلة</code> | <code>رجلين يرتديان ملابس غريبة يقفزان على ملعب كرة السلة</code> |
|
246 |
-
| <code>الرجل جالس</code> | <code>رجل يرتدي قميصاً أحمر يعزف الطبول.</code> | <code>رجل في قميص رمادي يقف.</code> |
|
247 |
-
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
248 |
-
```json
|
249 |
-
{
|
250 |
-
"loss": "MultipleNegativesRankingLoss",
|
251 |
-
"matryoshka_dims": [
|
252 |
-
768,
|
253 |
-
512
|
254 |
-
],
|
255 |
-
"matryoshka_weights": [
|
256 |
-
1,
|
257 |
-
1
|
258 |
-
],
|
259 |
-
"n_dims_per_step": -1
|
260 |
-
}
|
261 |
-
```
|
262 |
-
|
263 |
-
### Training Hyperparameters
|
264 |
-
#### Non-Default Hyperparameters
|
265 |
-
|
266 |
-
- `eval_strategy`: steps
|
267 |
-
- `per_device_train_batch_size`: 50
|
268 |
- `per_device_eval_batch_size`: 10
|
269 |
- `learning_rate`: 1e-05
|
|
|
270 |
- `bf16`: True
|
|
|
|
|
271 |
- `batch_sampler`: no_duplicates
|
272 |
|
|
|
|
|
273 |
### Framework Versions
|
274 |
- Python: 3.10.14
|
275 |
- Sentence Transformers: 3.2.0
|
@@ -279,6 +304,25 @@ You can finetune this model on your own dataset.
|
|
279 |
- Datasets: 3.0.1
|
280 |
- Tokenizers: 0.20.1
|
281 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
|
283 |
#### Sentence Transformers
|
284 |
```bibtex
|
|
|
91 |
value: 0.42763149514327226
|
92 |
name: Spearman Dot
|
93 |
license: apache-2.0
|
94 |
+
language:
|
95 |
+
- ar
|
96 |
+
- en
|
97 |
---
|
98 |
|
99 |
+
# SILMA Arabic Matryoshka Embedding Model 0.1
|
100 |
|
|
|
|
|
|
|
101 |
|
102 |
### Model Description
|
103 |
- **Model Type:** Sentence Transformer
|
|
|
105 |
- **Maximum Sequence Length:** 512 tokens
|
106 |
- **Output Dimensionality:** 768 tokens
|
107 |
- **Similarity Function:** Cosine Similarity
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
### Full Model Architecture
|
110 |
|
|
|
114 |
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
115 |
)
|
116 |
```
|
|
|
117 |
## Usage
|
118 |
|
119 |
### Direct Usage (Sentence Transformers)
|
120 |
|
121 |
+
First, install the Sentence Transformers library:
|
122 |
|
123 |
```bash
|
124 |
pip install -U sentence-transformers
|
125 |
```
|
126 |
|
127 |
+
Then load the model
|
128 |
+
|
129 |
```python
|
130 |
from sentence_transformers import SentenceTransformer
|
131 |
+
from sentence_transformers.util import cos_sim
|
132 |
+
import pandas as pd
|
133 |
|
134 |
+
model_name = "silma-ai/silma-embeddding-matryoshka-0.1"
|
135 |
+
model = SentenceTransformer(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
```
|
137 |
|
138 |
+
### Samples
|
|
|
139 |
|
140 |
+
### Samples
|
141 |
|
142 |
+
#### [+] Short Sentence Similarity
|
|
|
143 |
|
144 |
+
```python
|
145 |
+
query = "الطقس اليوم مشمس"
|
146 |
+
sentence_1 = "الجو اليوم كان مشمسًا ورائعًا"
|
147 |
+
sentence_2 = "الطقس اليوم غائم"
|
148 |
|
149 |
+
scores = []
|
150 |
+
for dim in [768, 256, 48, 16, 8]:
|
151 |
|
152 |
+
query_embedding = model.encode(query)[:dim]
|
153 |
|
154 |
+
sent1_score = cos_sim(query_embedding, model.encode(sentence_1)[:dim])[0][0].tolist()
|
155 |
+
sent2_score = cos_sim(query_embedding, model.encode(sentence_2)[:dim])[0][0].tolist()
|
156 |
|
157 |
+
scores.append({
|
158 |
+
"dim": dim,
|
159 |
+
"valid_top": sent1_score > sent2_score,
|
160 |
+
"sent1_score": sent1_score,
|
161 |
+
"sent2_score": sent2_score,
|
162 |
+
})
|
163 |
|
164 |
+
scores_df = pd.DataFrame(scores)
|
165 |
+
print(scores_df.to_markdown(index=False))
|
166 |
|
167 |
+
# | dim | valid_top | sent1_score | sent2_score |
|
168 |
+
# |------:|:------------|--------------:|--------------:|
|
169 |
+
# | 768 | True | 0.479942 | 0.233572 |
|
170 |
+
# | 256 | True | 0.509289 | 0.208452 |
|
171 |
+
# | 48 | True | 0.598825 | 0.191677 |
|
172 |
+
# | 16 | True | 0.917707 | 0.458854 |
|
173 |
+
# | 8 | True | 0.948563 | 0.675662 |
|
174 |
|
175 |
+
```
|
|
|
176 |
|
177 |
+
#### [+] Long Sentence Similarity
|
|
|
178 |
|
179 |
+
```python
|
180 |
+
query = "الكتاب يتحدث عن أهمية الذكاء الاصطناعي في تطوير المجتمعات الحديثة"
|
181 |
+
sentence_1 = "في هذا الكتاب، يناقش الكاتب كيف يمكن للتكنولوجيا أن تغير العالم"
|
182 |
+
sentence_2 = "الكاتب يتحدث عن أساليب الطبخ التقليدية في دول البحر الأبيض المتوسط"
|
183 |
+
|
184 |
+
scores = []
|
185 |
+
for dim in [768, 256, 48, 16, 8]:
|
186 |
+
|
187 |
+
query_embedding = model.encode(query)[:dim]
|
188 |
+
|
189 |
+
sent1_score = cos_sim(query_embedding, model.encode(sentence_1)[:dim])[0][0].tolist()
|
190 |
+
sent2_score = cos_sim(query_embedding, model.encode(sentence_2)[:dim])[0][0].tolist()
|
191 |
+
|
192 |
+
scores.append({
|
193 |
+
"dim": dim,
|
194 |
+
"valid_top": sent1_score > sent2_score,
|
195 |
+
"sent1_score": sent1_score,
|
196 |
+
"sent2_score": sent2_score,
|
197 |
+
})
|
198 |
+
|
199 |
+
scores_df = pd.DataFrame(scores)
|
200 |
+
print(scores_df.to_markdown(index=False))
|
201 |
+
|
202 |
+
# | dim | valid_top | sent1_score | sent2_score |
|
203 |
+
# |------:|:------------|--------------:|--------------:|
|
204 |
+
# | 768 | True | 0.637418 | 0.262693 |
|
205 |
+
# | 256 | True | 0.614761 | 0.268267 |
|
206 |
+
# | 48 | True | 0.758887 | 0.384649 |
|
207 |
+
# | 16 | True | 0.885737 | 0.204213 |
|
208 |
+
# | 8 | True | 0.918684 | 0.146478 |
|
209 |
+
```
|
210 |
+
|
211 |
+
#### [+] Question to Paragraph Matching
|
212 |
+
|
213 |
+
```python
|
214 |
+
query = "ما هي فوائد ممارسة الرياضة؟"
|
215 |
+
sentence_1 = "ممارسة الرياضة بشكل منتظم تساعد على تحسين الصحة العامة واللياقة البدنية"
|
216 |
+
sentence_2 = "تعليم الأطفال في سن مبكرة يساعدهم على تطوير المهارات العقلية بسرعة"
|
217 |
+
|
218 |
+
scores = []
|
219 |
+
for dim in [768, 256, 48, 16, 8]:
|
220 |
+
|
221 |
+
query_embedding = model.encode(query)[:dim]
|
222 |
+
|
223 |
+
sent1_score = cos_sim(query_embedding, model.encode(sentence_1)[:dim])[0][0].tolist()
|
224 |
+
sent2_score = cos_sim(query_embedding, model.encode(sentence_2)[:dim])[0][0].tolist()
|
225 |
+
|
226 |
+
scores.append({
|
227 |
+
"dim": dim,
|
228 |
+
"valid_top": sent1_score > sent2_score,
|
229 |
+
"sent1_score": sent1_score,
|
230 |
+
"sent2_score": sent2_score,
|
231 |
+
})
|
232 |
+
|
233 |
+
scores_df = pd.DataFrame(scores)
|
234 |
+
print(scores_df.to_markdown(index=False))
|
235 |
+
|
236 |
+
| dim | valid_top | sent1_score | sent2_score |
|
237 |
+
# |------:|:------------|--------------:|--------------:|
|
238 |
+
# | 768 | True | 0.520329 | 0.00295128 |
|
239 |
+
# | 256 | True | 0.556088 | -0.017764 |
|
240 |
+
# | 48 | True | 0.586194 | -0.110691 |
|
241 |
+
# | 16 | True | 0.606462 | -0.331682 |
|
242 |
+
# | 8 | True | 0.689649 | -0.359202 |
|
243 |
+
```
|
244 |
+
|
245 |
+
#### [+] Message to Intent-Name Mapping
|
246 |
+
|
247 |
+
```python
|
248 |
+
query = "أرغب في حجز تذكرة طيران من دبي الى القاهرة يوم الثلاثاء القادم"
|
249 |
+
sentence_1 = "حجز رحلة"
|
250 |
+
sentence_2 = "إلغاء حجز"
|
251 |
+
|
252 |
+
scores = []
|
253 |
+
for dim in [768, 256, 48, 16, 8]:
|
254 |
+
|
255 |
+
query_embedding = model.encode(query)[:dim]
|
256 |
+
|
257 |
+
sent1_score = cos_sim(query_embedding, model.encode(sentence_1)[:dim])[0][0].tolist()
|
258 |
+
sent2_score = cos_sim(query_embedding, model.encode(sentence_2)[:dim])[0][0].tolist()
|
259 |
+
|
260 |
+
scores.append({
|
261 |
+
"dim": dim,
|
262 |
+
"valid_top": sent1_score > sent2_score,
|
263 |
+
"sent1_score": sent1_score,
|
264 |
+
"sent2_score": sent2_score,
|
265 |
+
})
|
266 |
+
|
267 |
+
scores_df = pd.DataFrame(scores)
|
268 |
+
print(scores_df.to_markdown(index=False))
|
269 |
+
|
270 |
+
# | dim | valid_top | sent1_score | sent2_score |
|
271 |
+
# |------:|:------------|--------------:|--------------:|
|
272 |
+
# | 768 | True | 0.476535 | 0.221451 |
|
273 |
+
# | 256 | True | 0.392701 | 0.224967 |
|
274 |
+
# | 48 | True | 0.316223 | 0.0210683 |
|
275 |
+
# | 16 | False | -0.0242871 | 0.0250766 |
|
276 |
+
# | 8 | True | -0.215241 | -0.258904 |
|
277 |
+
```
|
278 |
|
279 |
## Training Details
|
280 |
|
281 |
+
We curated a dataset [silma-ai/silma-arabic-triplets-dataset-v1.0](https://huggingface.co/datasets/silma-ai/silma-arabic-triplets-dataset-v1.0) which
|
282 |
+
contains more than `2.25M` records of (anchor, positive and negative) Arabic/English samples.
|
283 |
+
Only the first `600` samples were taken to be the `eval` dataset, while the rest were used for fine-tuning.
|
284 |
+
|
285 |
+
This produced a finetuned `Matryoshka` model based on [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) with the following hyperparameters:
|
286 |
+
|
287 |
+
- `per_device_train_batch_size`: 250
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
- `per_device_eval_batch_size`: 10
|
289 |
- `learning_rate`: 1e-05
|
290 |
+
- `num_train_epochs`: 3
|
291 |
- `bf16`: True
|
292 |
+
- `dataloader_drop_last`: True
|
293 |
+
- `optim`: adamw_torch_fused
|
294 |
- `batch_sampler`: no_duplicates
|
295 |
|
296 |
+
**[training script](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/matryoshka/matryoshka_sts.py)**
|
297 |
+
|
298 |
### Framework Versions
|
299 |
- Python: 3.10.14
|
300 |
- Sentence Transformers: 3.2.0
|
|
|
304 |
- Datasets: 3.0.1
|
305 |
- Tokenizers: 0.20.1
|
306 |
|
307 |
+
### Citation:
|
308 |
+
|
309 |
+
#### BibTeX:
|
310 |
+
|
311 |
+
```bibtex
|
312 |
+
@misc{silma2024embedding,
|
313 |
+
author = {Abu Bakr Soliman, Karim Ouda, Silma AI},
|
314 |
+
title = {Silma Embedding Matryoshka 0.1},
|
315 |
+
year = {2024},
|
316 |
+
publisher = {Hugging Face},
|
317 |
+
howpublished = {\url{https://huggingface.co/silma-ai/silma-embeddding-matryoshka-0.1}},
|
318 |
+
}
|
319 |
+
```
|
320 |
+
|
321 |
+
#### APA:
|
322 |
+
|
323 |
+
```apa
|
324 |
+
Abu Bakr Soliman, Karim Ouda, Silma AI. (2024). Silma Embedding Matryoshka STS 0.1 [Model]. Hugging Face. https://huggingface.co/silma-ai/silma-embeddding-matryoshka-0.1
|
325 |
+
```
|
326 |
|
327 |
#### Sentence Transformers
|
328 |
```bibtex
|