File size: 12,521 Bytes
9eb5073
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a186b0f
9eb5073
a186b0f
9eb5073
 
 
 
 
a186b0f
 
 
 
 
9eb5073
 
a186b0f
9eb5073
 
a186b0f
9eb5073
 
a186b0f
9eb5073
 
a186b0f
9eb5073
 
a186b0f
9eb5073
 
a186b0f
9eb5073
 
a186b0f
9eb5073
 
a186b0f
9eb5073
 
 
 
 
a186b0f
 
 
 
 
9eb5073
 
a186b0f
9eb5073
 
a186b0f
9eb5073
 
a186b0f
9eb5073
 
a186b0f
9eb5073
 
a186b0f
9eb5073
 
a186b0f
9eb5073
 
a186b0f
9eb5073
 
a186b0f
9eb5073
a186b0f
06c686a
 
 
9eb5073
 
06c686a
9eb5073
036228c
 
9eb5073
036228c
9eb5073
 
 
 
 
06c686a
9eb5073
 
 
 
 
06c686a
 
9eb5073
 
06c686a
 
9eb5073
06c686a
 
9eb5073
 
06c686a
 
036228c
 
 
 
 
06c686a
 
9eb5073
06c686a
 
 
 
9eb5073
06c686a
 
9eb5073
06c686a
9eb5073
06c686a
 
9eb5073
06c686a
 
 
 
 
 
9eb5073
06c686a
 
9eb5073
06c686a
 
 
 
 
 
 
9eb5073
06c686a
9eb5073
06c686a
9eb5073
06c686a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9eb5073
06c686a
9eb5073
06c686a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9eb5073
 
 
06c686a
 
 
 
 
 
 
9eb5073
 
06c686a
9eb5073
06c686a
 
9eb5073
 
06c686a
 
9eb5073
 
 
 
 
 
 
 
 
036228c
 
 
 
 
 
 
 
 
06c686a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9eb5073
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
---
base_model: aubmindlab/bert-base-arabertv02
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- loss:CosineSimilarityLoss
model-index:
- name: silma-embeddding-matryoshka-0.1
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      config: ar-ar
      name: MTEB STS17 (ar-ar)
      revision: faeb762787bd10488a50c8b5be4a3b82e411949c
      split: test
      type: mteb/sts17-crosslingual-sts
    metrics:
    - type: pearson_cosine
      value: 0.8412612492708037
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8424703763883515
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8118466522597414
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8261184409962614
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8138085140113648
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8317403450502965
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8412612546419626
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8425077492152536
      name: Spearman Dot
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      config: en-ar
      name: MTEB STS17 (en-ar)
      revision: faeb762787bd10488a50c8b5be4a3b82e411949c
      split: test
      type: mteb/sts17-crosslingual-sts
    metrics:
    - type: pearson_cosine
      value: 0.43375293277885835
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.42763149514327226
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.40498576814866555
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.40636693141664754
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.39625411905897395
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.3926727199746294
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.4337529078998193
      name: Pearson Dot
    - type: spearman_dot
      value: 0.42763149514327226
      name: Spearman Dot
license: apache-2.0
language:
- ar
- en
---

# SILMA Arabic Matryoshka Embedding Model 0.1

The **SILMA Arabic Matryoshka Embedding Model 0.1** is an advanced Arabic text embedding model designed to produce powerful, contextually rich representations of text, 
facilitating a wide range of applications, from semantic search to document classification.

This model leverages the innovative **Matryoshka** Embedding technique which can be used in different dimensions to optimize the speed, storga, and accuracy trade-offs.

## Usage

### Direct Usage (Sentence Transformers)

First, install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then load the model

```python
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
import pandas as pd

model_name = "silma-ai/silma-embeddding-matryoshka-0.1"
model = SentenceTransformer(model_name)
```

### Samples

Using Matryoshka, you can specify the first `(n)` dimensions to represent each text.

In the following samples, you can check how each dimension affects the `cosine similarity` between a query and the two inputs.

You can notice the in most cases, even too low dimension (i.e. 8) can produce acceptable semantic similarity scores.

#### [+] Short Sentence Similarity

```python
query = "الطقس اليوم مشمس"
sentence_1 = "الجو اليوم كان مشمسًا ورائعًا"
sentence_2 = "الطقس اليوم غائم"

scores = []
for dim in [768, 256, 48, 16, 8]:

    query_embedding = model.encode(query)[:dim]

    sent1_score = cos_sim(query_embedding, model.encode(sentence_1)[:dim])[0][0].tolist()
    sent2_score = cos_sim(query_embedding, model.encode(sentence_2)[:dim])[0][0].tolist()

    scores.append({
        "dim": dim,
        "valid_top": sent1_score > sent2_score,
        "sent1_score": sent1_score,
        "sent2_score": sent2_score,
    })

scores_df = pd.DataFrame(scores)
print(scores_df.to_markdown(index=False))

# |   dim | valid_top   |   sent1_score |   sent2_score |
# |------:|:------------|--------------:|--------------:|
# |   768 | True        |      0.479942 |      0.233572 |
# |   256 | True        |      0.509289 |      0.208452 |
# |    48 | True        |      0.598825 |      0.191677 |
# |    16 | True        |      0.917707 |      0.458854 |
# |     8 | True        |      0.948563 |      0.675662 |

```

#### [+] Long Sentence Similarity

```python
query = "الكتاب يتحدث عن أهمية الذكاء الاصطناعي في تطوير المجتمعات الحديثة"
sentence_1 = "في هذا الكتاب، يناقش الكاتب كيف يمكن للتكنولوجيا أن تغير العالم"
sentence_2 = "الكاتب يتحدث عن أساليب الطبخ التقليدية في دول البحر الأبيض المتوسط"

scores = []
for dim in [768, 256, 48, 16, 8]:

    query_embedding = model.encode(query)[:dim]

    sent1_score = cos_sim(query_embedding, model.encode(sentence_1)[:dim])[0][0].tolist()
    sent2_score = cos_sim(query_embedding, model.encode(sentence_2)[:dim])[0][0].tolist()

    scores.append({
        "dim": dim,
        "valid_top": sent1_score > sent2_score,
        "sent1_score": sent1_score,
        "sent2_score": sent2_score,
    })

scores_df = pd.DataFrame(scores)
print(scores_df.to_markdown(index=False))

# |   dim | valid_top   |   sent1_score |   sent2_score |
# |------:|:------------|--------------:|--------------:|
# |   768 | True        |      0.637418 |      0.262693 |
# |   256 | True        |      0.614761 |      0.268267 |
# |    48 | True        |      0.758887 |      0.384649 |
# |    16 | True        |      0.885737 |      0.204213 |
# |     8 | True        |      0.918684 |      0.146478 |
```

#### [+] Question to Paragraph Matching

```python
query = "ما هي فوائد ممارسة الرياضة؟"
sentence_1 = "ممارسة الرياضة بشكل منتظم تساعد على تحسين الصحة العامة واللياقة البدنية"
sentence_2 = "تعليم الأطفال في سن مبكرة يساعدهم على تطوير المهارات العقلية بسرعة"

scores = []
for dim in [768, 256, 48, 16, 8]:

    query_embedding = model.encode(query)[:dim]

    sent1_score = cos_sim(query_embedding, model.encode(sentence_1)[:dim])[0][0].tolist()
    sent2_score = cos_sim(query_embedding, model.encode(sentence_2)[:dim])[0][0].tolist()

    scores.append({
        "dim": dim,
        "valid_top": sent1_score > sent2_score,
        "sent1_score": sent1_score,
        "sent2_score": sent2_score,
    })

scores_df = pd.DataFrame(scores)
print(scores_df.to_markdown(index=False))

|   dim | valid_top   |   sent1_score |   sent2_score |
# |------:|:------------|--------------:|--------------:|
# |   768 | True        |      0.520329 |    0.00295128 |
# |   256 | True        |      0.556088 |   -0.017764   |
# |    48 | True        |      0.586194 |   -0.110691   |
# |    16 | True        |      0.606462 |   -0.331682   |
# |     8 | True        |      0.689649 |   -0.359202   |
```

#### [+] Message to Intent-Name Mapping

```python
query = "أرغب في حجز تذكرة طيران من دبي الى القاهرة يوم الثلاثاء القادم"
sentence_1 = "حجز رحلة"
sentence_2 = "إلغاء حجز"

scores = []
for dim in [768, 256, 48, 16, 8]:

    query_embedding = model.encode(query)[:dim]

    sent1_score = cos_sim(query_embedding, model.encode(sentence_1)[:dim])[0][0].tolist()
    sent2_score = cos_sim(query_embedding, model.encode(sentence_2)[:dim])[0][0].tolist()

    scores.append({
        "dim": dim,
        "valid_top": sent1_score > sent2_score,
        "sent1_score": sent1_score,
        "sent2_score": sent2_score,
    })

scores_df = pd.DataFrame(scores)
print(scores_df.to_markdown(index=False))

# |   dim | valid_top   |   sent1_score |   sent2_score |
# |------:|:------------|--------------:|--------------:|
# |   768 | True        |     0.476535  |     0.221451  |
# |   256 | True        |     0.392701  |     0.224967  |
# |    48 | True        |     0.316223  |     0.0210683 |
# |    16 | False       |    -0.0242871 |     0.0250766 |
# |     8 | True        |    -0.215241  |    -0.258904  |
```

## Training Details

We curated a dataset [silma-ai/silma-arabic-triplets-dataset-v1.0](https://huggingface.co/datasets/silma-ai/silma-arabic-triplets-dataset-v1.0) which
contains more than `2.25M` records of (anchor, positive and negative) Arabic/English samples. 
Only the first `600` samples were taken to be the `eval` dataset, while the rest were used for fine-tuning.

This produced a finetuned `Matryoshka` model based on [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) with the following hyperparameters:

- `per_device_train_batch_size`: 250
- `per_device_eval_batch_size`: 10
- `learning_rate`: 1e-05
- `num_train_epochs`: 3
- `bf16`: True
- `dataloader_drop_last`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

**[training script](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/matryoshka/matryoshka_sts.py)**

### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.2.0
- Transformers: 4.45.2
- PyTorch: 2.3.1
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.20.1

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

### Citation:

#### BibTeX:

```bibtex
@misc{silma2024embedding,
  author = {Abu Bakr Soliman, Karim Ouda, Silma AI},
  title = {Silma Embedding Matryoshka 0.1},
  year = {2024},
  publisher = {Hugging Face},
  howpublished = {\url{https://huggingface.co/silma-ai/silma-embeddding-matryoshka-0.1}},
}
```

#### APA:

```apa
Abu Bakr Soliman, Karim Ouda, Silma AI. (2024). Silma Embedding Matryoshka STS 0.1 [Model]. Hugging Face. https://huggingface.co/silma-ai/silma-embeddding-matryoshka-0.1
```

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->