YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Steps to use this model

This model uses tokenizer 'rinna/japanese-roberta-base'. Therefore, below steps are critical to run the model correctly.

  1. Create a local root directory on your system and new python environment.
  2. Install below requirements
transformers==4.12.2
torch==1.10.0
numpy==1.21.3
pandas==1.3.4
sentencepiece==0.1.96
  1. Go to link: "https://huggingface.co/spaces/shubh2014shiv/Japanese_NLP/tree/main" and download the fine tuned weights "reviewSentiments_jp.pt" in same local root directory.
  2. Rename the downloaded weights as "reviewSentiments_jp.pt"
  3. Use below code in the newly created environment.
from transformers import T5Tokenizer,BertForSequenceClassification
import torch
tokenizer = T5Tokenizer.from_pretrained('rinna/japanese-roberta-base')
japanese_review_text = "履きやすい。タイムセールで購入しました。見た目以上にカッコいいです。(^^)"
encoded_data = tokenizer.batch_encode_plus([japanese_review_text ],
                                                   add_special_tokens=True,
                                                   return_attention_mask=True,
                                                   padding=True,
                                                   max_length=200,
                                                   return_tensors='pt',
                                                   truncation=True)
input_ids = encoded_data['input_ids']
attention_masks = encoded_data['attention_mask']
model = BertForSequenceClassification.from_pretrained("shubh2014shiv/jp_review_sentiments_amzn",
                                                                      num_labels=2,
                                                                      output_attentions=False,
                                                                      output_hidden_states=False)
model.load_state_dict(torch.load('reviewSentiments_jp.pt',map_location=torch.device('cpu')))
inputs = { 'input_ids': input_ids,
              'attention_mask': attention_masks}
with torch.no_grad():
  outputs = model(**inputs)

logits = outputs.logits
logits = logits.detach().cpu().numpy()
scores = 1 / (1 + np.exp(-1 * logits))
result = {"TEXT (文章)": jp_review_text,'NEGATIVE (ネガティブ)': scores[0][0], 'POSITIVE (ポジティブ)': scores[0][1]}

Output:

{'TEXT (文章)': '履きやすい。タイムセールで購入しました。見た目以上にカッコいいです。(^^)', 'NEGATIVE (ネガティブ)': 0.023672901, 'POSITIVE (ポジティブ)': 0.96819043}

Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using shubh2014shiv/jp_review_sentiments_amzn 1