|
---
|
|
language: "en"
|
|
tags:
|
|
- paraphrase-generation
|
|
- text-generation
|
|
- Conditional Generation
|
|
inference: false
|
|
---
|
|
|
|
# Simple model for Paraphrase Generation
|
|
β
|
|
## Model description
|
|
β
|
|
T5-based model for generating paraphrased sentences. It is trained on the labeled [MSRP](https://www.microsoft.com/en-us/download/details.aspx?id=52398) and [Google PAWS](https://github.com/google-research-datasets/paws) dataset.
|
|
β
|
|
## How to use
|
|
β
|
|
```python
|
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("shrishail/t5_paraphrase_msrp_paws")
|
|
model = AutoModelForSeq2SeqLM.from_pretrained("shrishail/t5_paraphrase_msrp_paws")
|
|
β
|
|
sentence = "This is something which i cannot understand at all"
|
|
text = "paraphrase: " + sentence + " </s>"
|
|
encoding = tokenizer.encode_plus(text,pad_to_max_length=True, return_tensors="pt")
|
|
input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda")
|
|
outputs = model.generate(
|
|
input_ids=input_ids, attention_mask=attention_masks,
|
|
max_length=256,
|
|
do_sample=True,
|
|
top_k=120,
|
|
top_p=0.95,
|
|
early_stopping=True,
|
|
num_return_sequences=5
|
|
)
|
|
for output in outputs:
|
|
line = tokenizer.decode(output, skip_special_tokens=True,clean_up_tokenization_spaces=True)
|
|
print(line)
|
|
β
|
|
```
|
|
|
|
|