File size: 2,345 Bytes
4409b68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
datasets:
- sms_spam
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: bert-base-uncased-finetuned-smsspam
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: sms_spam
      type: sms_spam
      config: plain_text
      split: train
      args: plain_text
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9904420549581839
    - name: Precision
      type: precision
      value: 0.9814814814814815
    - name: Recall
      type: recall
      value: 0.9464285714285714
    - name: F1
      type: f1
      value: 0.9636363636363636
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-uncased-finetuned-smsspam

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the sms_spam dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0637
- Accuracy: 0.9904
- Precision: 0.9815
- Recall: 0.9464
- F1: 0.9636

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.0828        | 1.0   | 593  | 0.0538          | 0.9892   | 0.9725    | 0.9464 | 0.9593 |
| 0.0269        | 2.0   | 1186 | 0.1792          | 0.9677   | 0.8244    | 0.9643 | 0.8889 |
| 0.0229        | 3.0   | 1779 | 0.0623          | 0.9916   | 0.9817    | 0.9554 | 0.9683 |
| 0.0043        | 4.0   | 2372 | 0.0637          | 0.9904   | 0.9815    | 0.9464 | 0.9636 |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3