shre-db commited on
Commit
4409b68
·
1 Parent(s): 7fbe6ee

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -0
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: bert-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - sms_spam
8
+ metrics:
9
+ - accuracy
10
+ - precision
11
+ - recall
12
+ - f1
13
+ model-index:
14
+ - name: bert-base-uncased-finetuned-smsspam
15
+ results:
16
+ - task:
17
+ name: Text Classification
18
+ type: text-classification
19
+ dataset:
20
+ name: sms_spam
21
+ type: sms_spam
22
+ config: plain_text
23
+ split: train
24
+ args: plain_text
25
+ metrics:
26
+ - name: Accuracy
27
+ type: accuracy
28
+ value: 0.9904420549581839
29
+ - name: Precision
30
+ type: precision
31
+ value: 0.9814814814814815
32
+ - name: Recall
33
+ type: recall
34
+ value: 0.9464285714285714
35
+ - name: F1
36
+ type: f1
37
+ value: 0.9636363636363636
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # bert-base-uncased-finetuned-smsspam
44
+
45
+ This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the sms_spam dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.0637
48
+ - Accuracy: 0.9904
49
+ - Precision: 0.9815
50
+ - Recall: 0.9464
51
+ - F1: 0.9636
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 5e-05
71
+ - train_batch_size: 8
72
+ - eval_batch_size: 8
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 4
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
81
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
82
+ | 0.0828 | 1.0 | 593 | 0.0538 | 0.9892 | 0.9725 | 0.9464 | 0.9593 |
83
+ | 0.0269 | 2.0 | 1186 | 0.1792 | 0.9677 | 0.8244 | 0.9643 | 0.8889 |
84
+ | 0.0229 | 3.0 | 1779 | 0.0623 | 0.9916 | 0.9817 | 0.9554 | 0.9683 |
85
+ | 0.0043 | 4.0 | 2372 | 0.0637 | 0.9904 | 0.9815 | 0.9464 | 0.9636 |
86
+
87
+
88
+ ### Framework versions
89
+
90
+ - Transformers 4.31.0
91
+ - Pytorch 2.0.1+cu118
92
+ - Datasets 2.14.4
93
+ - Tokenizers 0.13.3