SAG-ViT / sag_vit_model.py
shravvvv's picture
Added model files and updated config.json
039647a
raw
history blame
4.44 kB
import torch
from torch import nn
from huggingface_hub import PyTorchModelHubMixin
from torch_geometric.data import Batch
from model_components import EfficientNetV2FeatureExtractor, GATGNN, TransformerEncoder, MLPBlock
from graph_construction import build_graph_from_patches, build_graph_data_from_patches
###############################################################################
# SAG-ViT Model:
# This class combines:
# 1) CNN backbone to produce high-fidelity feature maps (Section 3.1),
# 2) Graph construction and GAT to refine local patch embeddings (Section 3.2 and 3.3),
# 3) A Transformer encoder to capture global relationships (Section 3.3),
# 4) A final MLP classifier.
###############################################################################
class SAGViTClassifier(nn.Module, PyTorchModelHubMixin):
"""
SAG-ViT: Scale-Aware Graph Attention Vision Transformer
This model integrates the following steps:
- Extract multi-scale features from images using a CNN backbone (EfficientNetv2 here).
- Partition the feature map into patches and build a graph where each node is a patch.
- Use a Graph Attention Network (GAT) to refine patch embeddings based on local spatial relationships.
- Utilize a Transformer encoder to model long-range dependencies and integrate multi-scale information.
- Finally, classify the resulting representation into desired classes.
Inputs:
- x (Tensor): Input images (B, 3, H, W)
Outputs:
- out (Tensor): Classification logits (B, num_classes)
"""
def __init__(
self,
patch_size=(4,4),
num_classes=10,
d_model=64,
nhead=4,
num_layers=2,
dim_feedforward=64,
hidden_mlp_features=64,
in_channels=2560, # Derived from patch dimensions and CNN output channels
gcn_hidden=128,
gcn_out=64
):
super(SAGViTClassifier, self).__init__()
# CNN feature extractor (frozen pre-trained EfficientNetv2)
self.cnn = EfficientNetV2FeatureExtractor()
# Graph Attention Network to process patch embeddings
self.gcn = GATGNN(in_channels=in_channels, hidden_channels=gcn_hidden, out_channels=gcn_out)
# Learnable positional embedding for Transformer input
self.positional_embedding = nn.Parameter(torch.randn(1, 1, d_model))
# Extra embedding token (similar to class token) to summarize global info
self.extra_embedding = nn.Parameter(torch.randn(1, d_model))
# Transformer encoder to capture long-range global dependencies
self.transformer_encoder = TransformerEncoder(d_model, nhead, num_layers, dim_feedforward)
# MLP classification head
self.mlp = MLPBlock(d_model, hidden_mlp_features, num_classes)
self.patch_size = patch_size
def forward(self, x):
# Step 1: High-fidelity feature extraction from CNN
feature_map = self.cnn(x)
# Step 2: Build graphs from patches
G_global_batch, patches = build_graph_from_patches(feature_map, self.patch_size)
# Step 3: Convert to PyG Data format and batch
data_list = build_graph_data_from_patches(G_global_batch, patches)
device = x.device
batch = Batch.from_data_list(data_list).to(device)
# Step 4: GAT stage
x_gcn = self.gcn(batch)
# Step 5: Reshape GCN output back to (B, N, D)
# The number of patches per image is determined by patch size and feature map dimensions.
B = x.size(0)
D = x_gcn.size(-1)
# N is automatically inferred
# Thus x_gcn is (B, D) now. We need a sequence dimension for the Transformer.
# Let's treat each image-level embedding as one "patch token" plus an extra token:
patch_embeddings = x_gcn.unsqueeze(1) # (B, 1, D)
# Add positional embedding
patch_embeddings = patch_embeddings + self.positional_embedding # (B, 1, D)
# Add an extra learnable embedding (like a CLS token)
patch_embeddings = torch.cat([patch_embeddings, self.extra_embedding.unsqueeze(0).expand(B, -1, -1)], dim=1) # (B, 2, D)
# Step 6: Transformer encoder
x_trans = self.transformer_encoder(patch_embeddings)
# Step 7: Global pooling (here we just take the mean)
x_pooled = x_trans.mean(dim=1) # (B, D)
# Classification
out = self.mlp(x_pooled)
return out