This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - EU dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2278
  • Wer: 0.1787

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 72
  • eval_batch_size: 72
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 144
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2548 4.24 500 0.2470 0.3663
0.1435 8.47 1000 0.2000 0.2791
0.1158 12.71 1500 0.2030 0.2652
0.1094 16.95 2000 0.2096 0.2605
0.1004 21.19 2500 0.2150 0.2477
0.0945 25.42 3000 0.2072 0.2369
0.0844 29.66 3500 0.1981 0.2328
0.0877 33.89 4000 0.2041 0.2425
0.0741 38.14 4500 0.2353 0.2421
0.0676 42.37 5000 0.2092 0.2213
0.0623 46.61 5500 0.2217 0.2250
0.0574 50.84 6000 0.2152 0.2179
0.0583 55.08 6500 0.2207 0.2186
0.0488 59.32 7000 0.2225 0.2159
0.0456 63.56 7500 0.2293 0.2031
0.041 67.79 8000 0.2277 0.2013
0.0379 72.03 8500 0.2287 0.1991
0.0381 76.27 9000 0.2233 0.1954
0.0308 80.51 9500 0.2195 0.1835
0.0291 84.74 10000 0.2266 0.1825
0.0266 88.98 10500 0.2285 0.1801
0.0266 93.22 11000 0.2292 0.1801
0.0262 97.46 11500 0.2278 0.1788

Framework versions

  • Transformers 4.16.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.18.4.dev0
  • Tokenizers 0.11.0
Downloads last month
30
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train shpotes/xls-r-eus

Evaluation results