metadata
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
- generated_from_trainer
model-index:
- name: zephyr-7b-sft-lora-accum4-lr5e_5
results: []
zephyr-7b-sft-lora-accum4-lr5e_5
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5833
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 50.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.8243 | 0.55 | 13 | 1.6684 |
1.5291 | 1.57 | 27 | 1.4003 |
1.2355 | 2.55 | 40 | 1.1808 |
1.1393 | 3.57 | 54 | 1.0949 |
1.0659 | 4.55 | 67 | 1.0457 |
1.0196 | 5.57 | 81 | 1.0065 |
0.9831 | 6.55 | 94 | 0.9686 |
0.9281 | 7.57 | 108 | 0.9255 |
0.8678 | 8.55 | 121 | 0.8814 |
0.8054 | 9.57 | 135 | 0.8275 |
0.7683 | 10.55 | 148 | 0.7861 |
0.6906 | 11.57 | 162 | 0.7272 |
0.6246 | 12.55 | 175 | 0.6795 |
0.5813 | 13.57 | 189 | 0.6364 |
0.5253 | 14.55 | 202 | 0.6078 |
0.5149 | 15.57 | 216 | 0.5811 |
0.4949 | 16.55 | 229 | 0.5605 |
0.4644 | 17.57 | 243 | 0.5462 |
0.458 | 18.55 | 256 | 0.5346 |
0.4294 | 19.57 | 270 | 0.5202 |
0.4143 | 20.55 | 283 | 0.5177 |
0.4161 | 21.57 | 297 | 0.5108 |
0.4128 | 22.55 | 310 | 0.5057 |
0.4055 | 23.57 | 324 | 0.5071 |
0.3937 | 24.55 | 337 | 0.5058 |
0.3967 | 25.57 | 351 | 0.5017 |
0.3754 | 26.55 | 364 | 0.4998 |
0.3742 | 27.57 | 378 | 0.5019 |
0.3756 | 28.55 | 391 | 0.5019 |
0.3652 | 29.57 | 405 | 0.5061 |
0.3597 | 30.55 | 418 | 0.5076 |
0.3609 | 31.57 | 432 | 0.5079 |
0.3581 | 32.55 | 445 | 0.5108 |
0.3426 | 33.57 | 459 | 0.5117 |
0.3481 | 34.55 | 472 | 0.5141 |
0.3435 | 35.57 | 486 | 0.5150 |
0.3317 | 36.55 | 499 | 0.5245 |
0.3387 | 37.57 | 513 | 0.5239 |
0.332 | 38.55 | 526 | 0.5319 |
0.3334 | 39.57 | 540 | 0.5342 |
0.323 | 40.55 | 553 | 0.5388 |
0.3144 | 41.57 | 567 | 0.5423 |
0.3092 | 42.55 | 580 | 0.5465 |
0.3084 | 43.57 | 594 | 0.5481 |
0.3091 | 44.55 | 607 | 0.5605 |
0.3044 | 45.57 | 621 | 0.5606 |
0.303 | 46.55 | 634 | 0.5683 |
0.2896 | 47.57 | 648 | 0.5722 |
0.2854 | 48.55 | 661 | 0.5778 |
0.291 | 49.57 | 675 | 0.5826 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0
- Datasets 2.14.6
- Tokenizers 0.14.1