language:
- zh
tags:
- bert
- pytorch
- zh
license: apache-2.0
MacBERT for Chinese Spelling Correction(macbert4csc) Model
中文拼写纠错模型
macbert4csc-base-chinese
evaluate SIGHAN2015 test data:
- Char Level: precision=0.9372, recall=0.8640 F1=0.8991
- Sentence Level: precision:0.8264, recall:0.7366, f1:0.7789
由于训练使用的数据使用了SIGHAN2015的训练集(复现paper),在SIGHAN2015的测试集上达到SOTA水平。
Usage
本项目开源在中文文本纠错项目:pycorrector,可支持macbert4csc模型,通过如下命令调用:
from pycorrector.macbert.macbert_corrector import MacBertCorrector
nlp = MacBertCorrector("shibing624/macbert4csc-base-chinese").macbert_correct
i = nlp('今天新情很好')
print(i)
当然,你也可使用官方的huggingface/transformers调用:
Please use 'Bert' related functions to load this model!
import operator
import torch
from transformers import BertTokenizer, BertForMaskedLM
tokenizer = BertTokenizer.from_pretrained("shibing624/macbert4csc-base-chinese")
model = BertForMaskedLM.from_pretrained("shibing624/macbert4csc-base-chinese")
texts = ["今天新情很好", "你找到你最喜欢的工作,我也很高心。"]
outputs = model(**tokenizer(texts, padding=True, return_tensors='pt'))
def get_errors(corrected_text, origin_text):
details = []
for i, ori_char in enumerate(origin_text):
if ori_char == ' ':
# add blank space
corrected_text = corrected_text[:i] + ' ' + corrected_text[i:]
continue
if i >= len(corrected_text):
continue
if ori_char != corrected_text[i]:
details.append((ori_char, corrected_text[i], i, i + 1))
details = sorted(details, key=operator.itemgetter(2))
return corrected_text, details
result = []
for ids, text in zip(outputs.logits, texts):
_text = tokenizer.decode(torch.argmax(ids, dim=-1), skip_special_tokens=True).replace(' ', '')
corrected_text = _text[:len(text)]
corrected_text, details = get_errors(corrected_text, text)
print(text, ' => ', corrected_text, details)
result.append((corrected_text, details))
print(result)
output:
今天新情很好 => 今天心情很好 [('新', '心', 2, 3)]
你找到你最喜欢的工作,我也很高心。 => 你找到你最喜欢的工作,我也很高兴。 [('心', '兴', 15, 16)]
模型文件组成:
macbert4csc-base-chinese
├── config.json
├── added_tokens.json
├── pytorch_model.bin
├── special_tokens_map.json
├── tokenizer_config.json
└── vocab.txt
训练数据集
SIGHAN+Wang271K中文纠错数据集
数据集 | 语料 | 下载链接 | 压缩包大小 |
---|---|---|---|
SIGHAN+Wang271K中文纠错数据集 |
SIGHAN+Wang271K(27万条) | 百度网盘(密码01b9) | 106M |
原始SIGHAN数据集 |
SIGHAN13 14 15 | 官方csc.html | 339K |
原始Wang271K数据集 |
Wang271K | Automatic-Corpus-Generation dimmywang提供 | 93M |
SIGHAN+Wang271K中文纠错数据集,数据格式:
[
{
"id": "B2-4029-3",
"original_text": "晚间会听到嗓音,白天的时候大家都不会太在意,但是在睡觉的时候这嗓音成为大家的恶梦。",
"wrong_ids": [
5,
31
],
"correct_text": "晚间会听到噪音,白天的时候大家都不会太在意,但是在睡觉的时候这噪音成为大家的恶梦。"
},
]
macbert4csc
├── config.json
├── pytorch_model.bin
├── special_tokens_map.json
├── tokenizer_config.json
└── vocab.txt
如果需要训练macbert4csc,请参考https://github.com/shibing624/pycorrector/tree/master/pycorrector/macbert
About MacBERT
MacBERT is an improved BERT with novel MLM as correction pre-training task, which mitigates the discrepancy of pre-training and fine-tuning.
Here is an example of our pre-training task.
task | Example |
---|---|
Original Sentence | we use a language model to predict the probability of the next word. |
MLM | we use a language [M] to [M] ##di ##ct the pro [M] ##bility of the next word . |
Whole word masking | we use a language [M] to [M] [M] [M] the [M] [M] [M] of the next word . |
N-gram masking | we use a [M] [M] to [M] [M] [M] the [M] [M] [M] [M] [M] next word . |
MLM as correction | we use a text system to ca ##lc ##ulate the po ##si ##bility of the next word . |
Except for the new pre-training task, we also incorporate the following techniques.
- Whole Word Masking (WWM)
- N-gram masking
- Sentence-Order Prediction (SOP)
Note that our MacBERT can be directly replaced with the original BERT as there is no differences in the main neural architecture.
For more technical details, please check our paper: Revisiting Pre-trained Models for Chinese Natural Language Processing
Citation
@software{pycorrector,
author = {Xu Ming},
title = {pycorrector: Text Error Correction Tool},
year = {2021},
url = {https://github.com/shibing624/pycorrector},
}