Whisper-genshin-en-2-vocab

This model is a fine-tuned version of openai/whisper-small on the genshin-en-vocab dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0410
  • Wer: 0.8868

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
15.0132 0.0847 10 14.9341 1.1887
13.4253 0.1695 20 10.7182 1.1887
8.5291 0.2542 30 5.9579 1.1698
5.457 0.3390 40 3.9144 1.1132
3.0251 0.4237 50 1.4680 1.0566
1.4178 0.5085 60 1.2124 0.9623
1.4055 0.5932 70 1.1406 0.9811
1.0228 0.6780 80 1.0921 0.9623
1.0819 0.7627 90 1.0417 0.9623
0.8353 0.8475 100 1.0185 0.9434
0.8447 0.9322 110 1.0180 0.9245
0.7283 1.0169 120 1.0234 0.8868
0.4207 1.1017 130 1.0425 0.9245
0.4697 1.1864 140 1.0700 0.9434
0.366 1.2712 150 1.0767 0.9245
0.5056 1.3559 160 1.0976 0.9623
0.3706 1.4407 170 1.0599 0.9811
0.3012 1.5254 180 1.0518 0.9245
0.2972 1.6102 190 1.0651 0.9245
0.2596 1.6949 200 1.0465 0.9057
0.2067 1.7797 210 0.9912 0.9057
0.3327 1.8644 220 1.0045 0.9057
0.2363 1.9492 230 1.0041 0.9057
0.1537 2.0339 240 1.0085 0.9057
0.0523 2.1186 250 1.0026 0.9245
0.0898 2.2034 260 0.9883 0.9245
0.059 2.2881 270 0.9740 0.9245
0.062 2.3729 280 0.9758 0.9057
0.0719 2.4576 290 1.0023 0.9057
0.0241 2.5424 300 1.0046 0.9245
0.0401 2.6271 310 1.0177 0.9057
0.0395 2.7119 320 1.0301 0.9057
0.052 2.7966 330 1.0400 0.9057
0.063 2.8814 340 1.0566 0.9245
0.0244 2.9661 350 1.0358 0.9057
0.0208 3.0508 360 1.0179 0.9245
0.0073 3.1356 370 1.0228 0.9245
0.0059 3.2203 380 1.0336 0.9245
0.0065 3.3051 390 1.0231 0.9245
0.0075 3.3898 400 1.0128 0.8679
0.0046 3.4746 410 1.0114 0.8679
0.0073 3.5593 420 1.0139 0.8679
0.0106 3.6441 430 1.0262 0.8679
0.0053 3.7288 440 1.0332 0.8679
0.0058 3.8136 450 1.0446 0.8679
0.0035 3.8983 460 1.0514 0.8679
0.0052 3.9831 470 1.0565 0.8868
0.002 4.0678 480 1.0525 0.8868
0.002 4.1525 490 1.0477 0.8868
0.0021 4.2373 500 1.0458 0.8868
0.0021 4.3220 510 1.0447 0.8868
0.002 4.4068 520 1.0446 0.8868
0.0021 4.4915 530 1.0434 0.8868
0.0019 4.5763 540 1.0434 0.8868
0.0018 4.6610 550 1.0425 0.8868
0.002 4.7458 560 1.0425 0.8868
0.0021 4.8305 570 1.0419 0.8868
0.0022 4.9153 580 1.0414 0.8868
0.0023 5.0 590 1.0410 0.8868

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
7
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for shaunliu82714/whisper-finetuned-vocab-trained

Finetuned
(2160)
this model