|
--- |
|
license: apache-2.0 |
|
language: fa |
|
widget: |
|
- text: "از هر دستی بگیری از همون [MASK] میدی" |
|
- text: "این آخرین باره بهت [MASK] میگم" |
|
- text: 'چرا آن جوان بیچاره را به سخره [MASK]' |
|
- text: 'آخه محسن [MASK] هم شد خواننده؟' |
|
- text: 'پسر عجب [MASK] زد' |
|
tags: |
|
- bert-fa |
|
- bert-persian |
|
model-index: |
|
- name: dal-bert |
|
results: [] |
|
--- |
|
|
|
|
|
DAL-BERT: Another pre-trained language model for Persian |
|
--- |
|
|
|
DAL-BERT is a transformer-based model trained on more than 80 gigabytes of Persian text including both formal and informal (conversational) contexts. The architecture of this model follows the original BERT [[Devlin et al.](https://arxiv.org/abs/1810.04805)]. |
|
|
|
How to use the Model |
|
--- |
|
```python |
|
from transformers import BertForMaskedLM, BertTokenizer, pipeline |
|
model = BertForMaskedLM.from_pretrained('sharif-dal/dal-bert') |
|
tokenizer = BertTokenizer.from_pretrained('sharif-dal/dal-bert') |
|
fill_sentence = pipeline('fill-mask', model=model, tokenizer=tokenizer) |
|
fill_sentence('اینجا جمله مورد نظر خود را بنویسید و کلمه موردنظر را [MASK] کنید') |
|
``` |
|
|
|
The Training Data |
|
--- |
|
The abovementioned model was trained on a bunch of newspapers, news agencies' websites, technology-related sources, people's comments, magazines, literary criticism, and some blogs. |
|
|
|
Evaluation |
|
--- |
|
|
|
| Training Loss | Epoch | Step | |
|
|:-------------:|:-----:|:-----:| |
|
| 2.1855 | 13 | 7649486 | |
|
|
|
Contributors |
|
--- |
|
- Arman Malekzadeh [[Github](https://github.com/arm-on)] |
|
- Amirhossein Ramazani, Master's Student in AI @ Sharif University of Technology [[Linkedin](https://www.linkedin.com/in/amirhossein-ramazani/)] [[Github](https://github.com/amirhossein1376)] |
|
|