xlm-roberta-base_latin_kin-amh-eng_train_loss

This model is a fine-tuned version of FacebookAI/xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0326
  • Spearman Corr: 0.7395

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Spearman Corr
No log 0.59 200 0.0303 0.6125
No log 1.17 400 0.0269 0.6780
No log 1.76 600 0.0393 0.6855
0.036 2.35 800 0.0338 0.7111
0.036 2.93 1000 0.0303 0.6886
0.036 3.52 1200 0.0327 0.7025
0.0243 4.11 1400 0.0269 0.7220
0.0243 4.69 1600 0.0287 0.7246
0.0243 5.28 1800 0.0260 0.7336
0.0243 5.87 2000 0.0266 0.7234
0.0185 6.45 2200 0.0252 0.7347
0.0185 7.04 2400 0.0281 0.7276
0.0185 7.62 2600 0.0294 0.7298
0.0141 8.21 2800 0.0274 0.7219
0.0141 8.8 3000 0.0285 0.7260
0.0141 9.38 3200 0.0276 0.7315
0.0141 9.97 3400 0.0291 0.7329
0.0109 10.56 3600 0.0310 0.7339
0.0109 11.14 3800 0.0326 0.7395

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2
Downloads last month
12
Safetensors
Model size
278M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for shanhy/xlm-roberta-base_latin_kin-amh-eng_train_loss

Finetuned
(2762)
this model