furina_original_kin-hau-eng_train_spearman_corr

This model is a fine-tuned version of yihongLiu/furina on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0267
  • Spearman Corr: 0.7425

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Spearman Corr
No log 1.59 200 0.0442 0.5364
0.0796 3.19 400 0.0280 0.6912
0.0275 4.78 600 0.0329 0.7307
0.0199 6.37 800 0.0256 0.7473
0.015 7.97 1000 0.0275 0.7502
0.015 9.56 1200 0.0265 0.7396
0.0127 11.16 1400 0.0264 0.7484
0.0104 12.75 1600 0.0255 0.7467
0.0089 14.34 1800 0.0256 0.7512
0.0079 15.94 2000 0.0270 0.7457
0.0079 17.53 2200 0.0264 0.7420
0.0069 19.12 2400 0.0276 0.7444
0.0062 20.72 2600 0.0265 0.7383
0.0059 22.31 2800 0.0264 0.7416
0.0055 23.9 3000 0.0269 0.7439
0.0055 25.5 3200 0.0268 0.7415
0.0051 27.09 3400 0.0267 0.7425

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2
Downloads last month
11
Safetensors
Model size
394M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for shanhy/furina_original_kin-hau-eng_train_spearman_corr

Base model

yihongLiu/furina
Finetuned
(151)
this model