shafin's picture
update model card README.md
c81ed47
|
raw
history blame
11.6 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
model-index:
  - name: distilbert-base-uncased-cohl
    results: []

distilbert-base-uncased-cohl

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 5.5505

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 200

Training results

Training Loss Epoch Step Validation Loss
7.4096 1.0 157 6.2368
6.1384 2.0 314 6.0235
5.9964 3.0 471 5.9395
5.9145 4.0 628 5.8933
5.8601 5.0 785 5.8380
5.8461 6.0 942 5.7921
5.82 7.0 1099 5.7787
5.8076 8.0 1256 5.7794
5.7927 9.0 1413 5.7946
5.782 10.0 1570 5.7553
5.7691 11.0 1727 5.7753
5.7671 12.0 1884 5.7607
5.7594 13.0 2041 5.7564
5.7443 14.0 2198 5.7553
5.7354 15.0 2355 5.7421
5.7428 16.0 2512 5.7304
5.7319 17.0 2669 5.7053
5.7187 18.0 2826 5.7095
5.7273 19.0 2983 5.7034
5.7121 20.0 3140 5.6822
5.7139 21.0 3297 5.7028
5.7072 22.0 3454 5.7020
5.695 23.0 3611 5.7085
5.6921 24.0 3768 5.6935
5.6964 25.0 3925 5.7071
5.6771 26.0 4082 5.7016
5.6911 27.0 4239 5.6765
5.6874 28.0 4396 5.6937
5.6788 29.0 4553 5.6744
5.6709 30.0 4710 5.6593
5.6743 31.0 4867 5.6719
5.6623 32.0 5024 5.6422
5.662 33.0 5181 5.6660
5.6577 34.0 5338 5.6790
5.6603 35.0 5495 5.6556
5.6607 36.0 5652 5.6476
5.6538 37.0 5809 5.6643
5.6481 38.0 5966 5.6489
5.6512 39.0 6123 5.6108
5.642 40.0 6280 5.6647
5.6475 41.0 6437 5.6633
5.6419 42.0 6594 5.6256
5.6364 43.0 6751 5.6524
5.6391 44.0 6908 5.6424
5.6307 45.0 7065 5.6384
5.6249 46.0 7222 5.6451
5.6242 47.0 7379 5.6413
5.6259 48.0 7536 5.6230
5.6223 49.0 7693 5.6285
5.6245 50.0 7850 5.6107
5.621 51.0 8007 5.6253
5.6203 52.0 8164 5.6457
5.6131 53.0 8321 5.6211
5.6026 54.0 8478 5.6360
5.6115 55.0 8635 5.6276
5.6079 56.0 8792 5.6274
5.6106 57.0 8949 5.6289
5.6053 58.0 9106 5.6438
5.6113 59.0 9263 5.6258
5.5983 60.0 9420 5.6453
5.6 61.0 9577 5.6351
5.6007 62.0 9734 5.6327
5.5989 63.0 9891 5.6102
5.5974 64.0 10048 5.6280
5.5987 65.0 10205 5.6299
5.5903 66.0 10362 5.6106
5.5915 67.0 10519 5.6149
5.5928 68.0 10676 5.6048
5.5876 69.0 10833 5.6279
5.5886 70.0 10990 5.6073
5.5859 71.0 11147 5.5987
5.5881 72.0 11304 5.6208
5.5805 73.0 11461 5.5869
5.5808 74.0 11618 5.6169
5.5813 75.0 11775 5.6019
5.5881 76.0 11932 5.6213
5.5823 77.0 12089 5.5931
5.5735 78.0 12246 5.5948
5.5788 79.0 12403 5.5878
5.5735 80.0 12560 5.5784
5.5701 81.0 12717 5.6084
5.5757 82.0 12874 5.5957
5.5697 83.0 13031 5.5931
5.573 84.0 13188 5.5862
5.5652 85.0 13345 5.6049
5.5635 86.0 13502 5.5959
5.5634 87.0 13659 5.5865
5.5644 88.0 13816 5.6000
5.5662 89.0 13973 5.5971
5.5563 90.0 14130 5.5711
5.5612 91.0 14287 5.6007
5.5626 92.0 14444 5.5824
5.5543 93.0 14601 5.5966
5.5627 94.0 14758 5.5828
5.5633 95.0 14915 5.6066
5.5526 96.0 15072 5.5979
5.5529 97.0 15229 5.5756
5.5527 98.0 15386 5.5633
5.5568 99.0 15543 5.5775
5.5419 100.0 15700 5.5899
5.5436 101.0 15857 5.5657
5.5509 102.0 16014 5.5824
5.5468 103.0 16171 5.5936
5.5447 104.0 16328 5.5666
5.5469 105.0 16485 5.5747
5.5436 106.0 16642 5.5658
5.537 107.0 16799 5.5873
5.5356 108.0 16956 5.5981
5.5355 109.0 17113 5.5884
5.539 110.0 17270 5.5713
5.5413 111.0 17427 5.5951
5.5353 112.0 17584 5.5817
5.5275 113.0 17741 5.5981
5.5422 114.0 17898 5.5744
5.5298 115.0 18055 5.5637
5.5335 116.0 18212 5.5918
5.5305 117.0 18369 5.5717
5.5257 118.0 18526 5.5681
5.5313 119.0 18683 5.5984
5.5286 120.0 18840 5.5799
5.5217 121.0 18997 5.5746
5.5309 122.0 19154 5.5429
5.5288 123.0 19311 5.5787
5.5258 124.0 19468 5.5942
5.5185 125.0 19625 5.5922
5.5232 126.0 19782 5.5587
5.5227 127.0 19939 5.5575
5.5356 128.0 20096 5.5800
5.5226 129.0 20253 5.5780
5.5243 130.0 20410 5.5717
5.5154 131.0 20567 5.5644
5.5216 132.0 20724 5.5741
5.5212 133.0 20881 5.5778
5.5154 134.0 21038 5.5588
5.5124 135.0 21195 5.5647
5.5164 136.0 21352 5.5449
5.5176 137.0 21509 5.5625
5.5078 138.0 21666 5.5803
5.5137 139.0 21823 5.5805
5.5154 140.0 21980 5.5494
5.5188 141.0 22137 5.5791
5.5032 142.0 22294 5.5724
5.509 143.0 22451 5.5921
5.5112 144.0 22608 5.5688
5.5041 145.0 22765 5.5619
5.5103 146.0 22922 5.5735
5.5112 147.0 23079 5.5763
5.5085 148.0 23236 5.5748
5.506 149.0 23393 5.5738
5.5118 150.0 23550 5.5718
5.5014 151.0 23707 5.5619
5.5087 152.0 23864 5.5810
5.51 153.0 24021 5.5804
5.5028 154.0 24178 5.5870
5.5157 155.0 24335 5.5536
5.5043 156.0 24492 5.5856
5.5083 157.0 24649 5.5663
5.5014 158.0 24806 5.5883
5.4994 159.0 24963 5.5754
5.5025 160.0 25120 5.5567
5.4998 161.0 25277 5.5729
5.5009 162.0 25434 5.5422
5.5063 163.0 25591 5.5731
5.5093 164.0 25748 5.5734
5.5011 165.0 25905 5.5617
5.5011 166.0 26062 5.5586
5.5017 167.0 26219 5.5483
5.5001 168.0 26376 5.5617
5.4964 169.0 26533 5.5477
5.5014 170.0 26690 5.5646
5.4981 171.0 26847 5.5723
5.4902 172.0 27004 5.5530
5.4957 173.0 27161 5.5614
5.4988 174.0 27318 5.5699
5.5005 175.0 27475 5.5637
5.5005 176.0 27632 5.5769
5.4973 177.0 27789 5.5624
5.4927 178.0 27946 5.5736
5.4962 179.0 28103 5.5639
5.4908 180.0 28260 5.5541
5.4909 181.0 28417 5.5598
5.4885 182.0 28574 5.5642
5.4902 183.0 28731 5.5590
5.4949 184.0 28888 5.5707
5.4935 185.0 29045 5.5597
5.4914 186.0 29202 5.5823
5.4914 187.0 29359 5.5597
5.4874 188.0 29516 5.5595
5.4934 189.0 29673 5.5685
5.4956 190.0 29830 5.5578
5.4902 191.0 29987 5.5762
5.4881 192.0 30144 5.5697
5.4934 193.0 30301 5.5631
5.4974 194.0 30458 5.5730
5.4939 195.0 30615 5.5614
5.4952 196.0 30772 5.5492
5.4892 197.0 30929 5.5613
5.49 198.0 31086 5.5737
5.4914 199.0 31243 5.5806
5.4954 200.0 31400 5.5505

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.0
  • Tokenizers 0.13.3