finetuned-bert / README.md
librarian-bot's picture
Librarian Bot: Add base_model information to model
09630cd
|
raw
history blame
1.77 kB
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model_index:
- name: finetuned-bert
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: mrpc
metric:
name: F1
type: f1
value: 0.9125214408233276
base_model: bert-base-cased
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned-bert
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3916
- Accuracy: 0.875
- F1: 0.9125
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.581 | 1.0 | 230 | 0.4086 | 0.8260 | 0.8711 |
| 0.366 | 2.0 | 460 | 0.3758 | 0.8480 | 0.8963 |
| 0.2328 | 3.0 | 690 | 0.3916 | 0.875 | 0.9125 |
### Framework versions
- Transformers 4.9.0.dev0
- Pytorch 1.8.1+cu111
- Datasets 1.8.1.dev0
- Tokenizers 0.10.1