sfulay's picture
Model save
1e58ec8 verified
|
raw
history blame
3.77 kB
metadata
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
  - trl
  - dpo
  - generated_from_trainer
model-index:
  - name: zephyr-7b-dpo-full-ultrabin-reward-scale-1-rpo
    results: []

zephyr-7b-dpo-full-ultrabin-reward-scale-1-rpo

This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0345
  • Rewards/chosen: -0.1240
  • Rewards/rejected: -0.4158
  • Rewards/accuracies: 0.7734
  • Rewards/margins: 0.2918
  • Logps/rejected: -304.2409
  • Logps/chosen: -275.0308
  • Logits/rejected: -2.4195
  • Logits/chosen: -2.5003

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 55
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.0497 0.1046 50 0.0471 0.0341 -0.0639 0.6953 0.0980 -269.0505 -259.2180 -2.5747 -2.6118
0.0399 0.2092 100 0.0400 -0.0674 -0.3039 0.7656 0.2365 -293.0492 -269.3653 -2.2263 -2.2796
0.0384 0.3138 150 0.0368 -0.1521 -0.4051 0.7812 0.2530 -303.1761 -277.8396 -2.4575 -2.5017
0.0354 0.4184 200 0.0368 -0.1608 -0.4413 0.7812 0.2805 -306.7949 -278.7134 -2.6355 -2.6785
0.035 0.5230 250 0.0359 -0.0276 -0.3002 0.7812 0.2726 -292.6817 -265.3905 -2.5364 -2.5931
0.0336 0.6276 300 0.0351 -0.1609 -0.4489 0.7734 0.2880 -307.5566 -278.7195 -2.3179 -2.4060
0.0338 0.7322 350 0.0348 -0.1145 -0.3940 0.7695 0.2795 -302.0604 -274.0787 -2.3603 -2.4329
0.0352 0.8368 400 0.0345 -0.1250 -0.4112 0.7734 0.2863 -303.7862 -275.1277 -2.4372 -2.5111
0.0342 0.9414 450 0.0345 -0.1240 -0.4158 0.7734 0.2918 -304.2409 -275.0308 -2.4195 -2.5003

Framework versions

  • Transformers 4.44.0.dev0
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1