sfulay's picture
Model save
75297e8 verified
|
raw
history blame
3.6 kB
metadata
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
  - trl
  - dpo
  - generated_from_trainer
model-index:
  - name: zephyr-7b-dpo-full-prometheus_consistent-reward-scale-1-rpo
    results: []

zephyr-7b-dpo-full-prometheus_consistent-reward-scale-1-rpo

This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0340
  • Rewards/chosen: -0.0965
  • Rewards/rejected: -0.3938
  • Rewards/accuracies: 0.7414
  • Rewards/margins: 0.2973
  • Logps/rejected: -258.4546
  • Logps/chosen: -285.2520
  • Logits/rejected: -2.1563
  • Logits/chosen: -2.3140

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 55
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.048 0.1143 50 0.0428 0.0615 -0.0563 0.7026 0.1178 -224.7078 -269.4535 -2.4545 -2.5520
0.0399 0.2286 100 0.0385 -0.0747 -0.3118 0.75 0.2371 -250.2514 -283.0706 -1.9893 -2.1601
0.0367 0.3429 150 0.0371 -0.1934 -0.4431 0.7672 0.2497 -263.3893 -294.9446 -2.3057 -2.4218
0.0375 0.4571 200 0.0353 -0.0541 -0.3320 0.7672 0.2779 -252.2786 -281.0130 -2.1436 -2.2907
0.0371 0.5714 250 0.0344 -0.0812 -0.3496 0.7629 0.2684 -254.0325 -283.7219 -2.2615 -2.3785
0.0345 0.6857 300 0.0341 -0.0682 -0.3495 0.7457 0.2813 -254.0265 -282.4234 -2.2130 -2.3475
0.0373 0.8 350 0.0341 -0.0908 -0.3849 0.7414 0.2941 -257.5619 -284.6819 -2.1788 -2.3321
0.0367 0.9143 400 0.0340 -0.0965 -0.3938 0.7414 0.2973 -258.4546 -285.2520 -2.1563 -2.3140

Framework versions

  • Transformers 4.44.0.dev0
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1