sfulay's picture
Model save
cfd151e verified
metadata
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
  - trl
  - dpo
  - generated_from_trainer
model-index:
  - name: zephyr-7b-dpo-full-prometheus-reward-scale-1
    results: []

zephyr-7b-dpo-full-prometheus-reward-scale-1

This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4890
  • Rewards/chosen: -1.5856
  • Rewards/rejected: -2.7832
  • Rewards/accuracies: 0.7371
  • Rewards/margins: 1.1976
  • Logps/rejected: -526.5942
  • Logps/chosen: -418.5211
  • Logits/rejected: 3.6380
  • Logits/chosen: 2.5080

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 55
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6615 0.1143 50 0.6475 -0.0448 -0.1732 0.6595 0.1284 -265.5944 -264.4379 -2.5754 -2.6221
0.5507 0.2286 100 0.5504 -0.7596 -1.5622 0.6897 0.8026 -404.4943 -335.9164 0.2567 -0.1843
0.521 0.3429 150 0.5234 -0.9406 -1.8921 0.7198 0.9516 -437.4890 -354.0176 1.8188 1.1097
0.5162 0.4571 200 0.5108 -1.2309 -2.2537 0.7328 1.0228 -473.6453 -383.0527 2.2567 1.2299
0.5186 0.5714 250 0.5027 -1.3697 -2.4832 0.7026 1.1135 -496.5983 -396.9323 2.8322 1.5762
0.4883 0.6857 300 0.4936 -1.5404 -2.7021 0.7371 1.1617 -518.4875 -413.9998 3.3276 2.1394
0.4714 0.8 350 0.4907 -1.5101 -2.6852 0.7457 1.1752 -516.7975 -410.9666 3.5416 2.3945
0.4977 0.9143 400 0.4890 -1.5856 -2.7832 0.7371 1.1976 -526.5942 -418.5211 3.6380 2.5080

Framework versions

  • Transformers 4.44.0.dev0
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1