sfulay's picture
Model save
f3b3d0c verified
|
raw
history blame
3.57 kB
metadata
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
  - trl
  - dpo
  - generated_from_trainer
model-index:
  - name: zephyr-7b-dpo-full-prometheus-reward-scale-05
    results: []

zephyr-7b-dpo-full-prometheus-reward-scale-05

This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5286
  • Rewards/chosen: -1.4143
  • Rewards/rejected: -2.7417
  • Rewards/accuracies: 0.7629
  • Rewards/margins: 1.3275
  • Logps/rejected: -493.2510
  • Logps/chosen: -417.0316
  • Logits/rejected: 1.9856
  • Logits/chosen: 0.4911

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 55
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6696 0.1143 50 0.6584 -0.0084 -0.1643 0.6853 0.1559 -235.5072 -276.4426 -2.4382 -2.5406
0.6122 0.2286 100 0.6111 -0.4070 -0.8953 0.6767 0.4883 -308.6058 -316.3019 -2.5533 -2.6512
0.5476 0.3429 150 0.5583 -1.3343 -2.3426 0.7371 1.0083 -453.3369 -409.0355 0.9770 0.1441
0.5582 0.4571 200 0.5499 -1.0345 -2.1424 0.7328 1.1079 -433.3173 -379.0511 0.5624 -0.4976
0.5503 0.5714 250 0.5393 -1.1701 -2.3108 0.7371 1.1406 -450.1522 -392.6152 0.7719 -0.3725
0.5224 0.6857 300 0.5312 -1.2228 -2.5102 0.7543 1.2874 -470.0949 -397.8840 1.7088 0.1892
0.5396 0.8 350 0.5290 -1.4462 -2.7485 0.75 1.3024 -493.9275 -420.2202 1.9215 0.4365
0.55 0.9143 400 0.5286 -1.4143 -2.7417 0.7629 1.3275 -493.2510 -417.0316 1.9856 0.4911

Framework versions

  • Transformers 4.44.0.dev0
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1