sfulay's picture
Model save
308c2cb verified
|
raw
history blame
3.57 kB
metadata
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
  - trl
  - dpo
  - generated_from_trainer
model-index:
  - name: zephyr-7b-dpo-full-prometheus-reward-scale-05
    results: []

zephyr-7b-dpo-full-prometheus-reward-scale-05

This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5142
  • Rewards/chosen: -1.9575
  • Rewards/rejected: -3.2488
  • Rewards/accuracies: 0.7198
  • Rewards/margins: 1.2913
  • Logps/rejected: -573.1553
  • Logps/chosen: -455.7142
  • Logits/rejected: 4.0394
  • Logits/chosen: 3.0591

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 55
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6718 0.1143 50 0.6623 -0.0203 -0.1341 0.6595 0.1139 -261.6897 -261.9885 -2.5701 -2.6137
0.5837 0.2286 100 0.5855 -0.7924 -1.5143 0.6595 0.7219 -399.7070 -339.2018 -0.2076 -0.5772
0.5481 0.3429 150 0.5498 -1.3440 -2.2915 0.6940 0.9475 -477.4253 -394.3634 2.4336 1.6485
0.5289 0.4571 200 0.5409 -1.6426 -2.7545 0.6983 1.1119 -523.7253 -424.2230 3.5667 2.6372
0.54 0.5714 250 0.5280 -1.5391 -2.7058 0.7026 1.1667 -518.8563 -413.8667 2.6437 1.4166
0.5147 0.6857 300 0.5204 -1.8487 -3.0990 0.7112 1.2504 -558.1808 -444.8300 3.7771 2.6969
0.5033 0.8 350 0.5168 -1.8756 -3.1461 0.7414 1.2705 -562.8871 -447.5259 3.8637 2.7948
0.52 0.9143 400 0.5142 -1.9575 -3.2488 0.7198 1.2913 -573.1553 -455.7142 4.0394 3.0591

Framework versions

  • Transformers 4.44.0.dev0
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1