sfulay's picture
Model save
17161e6 verified
|
raw
history blame
3.57 kB
metadata
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
  - trl
  - dpo
  - generated_from_trainer
model-index:
  - name: zephyr-7b-dpo-full-prometheus-reward-scale-01
    results: []

zephyr-7b-dpo-full-prometheus-reward-scale-01

This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5012
  • Rewards/chosen: -1.7553
  • Rewards/rejected: -2.9981
  • Rewards/accuracies: 0.7198
  • Rewards/margins: 1.2428
  • Logps/rejected: -548.0841
  • Logps/chosen: -435.4877
  • Logits/rejected: 3.0596
  • Logits/chosen: 1.9658

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 55
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6661 0.1143 50 0.6541 -0.0354 -0.1594 0.6552 0.1240 -264.2141 -263.4992 -2.5732 -2.6193
0.561 0.2286 100 0.5663 -1.0515 -1.8367 0.7069 0.7852 -431.9447 -365.1131 -0.0076 -0.4111
0.5324 0.3429 150 0.5437 -1.4518 -2.4385 0.6853 0.9868 -492.1300 -405.1368 2.0029 1.3258
0.5261 0.4571 200 0.5247 -1.5625 -2.5913 0.6853 1.0288 -507.4055 -416.2077 2.7389 1.7313
0.5274 0.5714 250 0.5148 -1.6815 -2.8054 0.7155 1.1239 -528.8192 -428.1107 2.1266 1.0144
0.5 0.6857 300 0.5078 -1.6879 -2.8754 0.7198 1.1875 -535.8170 -428.7552 2.7028 1.5160
0.4879 0.8 350 0.5050 -1.8872 -3.0745 0.7198 1.1873 -555.7252 -448.6785 3.2477 2.2065
0.5082 0.9143 400 0.5012 -1.7553 -2.9981 0.7198 1.2428 -548.0841 -435.4877 3.0596 1.9658

Framework versions

  • Transformers 4.44.0.dev0
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1