|
---
|
|
language:
|
|
- ru
|
|
|
|
pipeline_tag: sentence-similarity
|
|
|
|
tags:
|
|
- russian
|
|
- pretraining
|
|
- embeddings
|
|
- tiny
|
|
- feature-extraction
|
|
- sentence-similarity
|
|
- sentence-transformers
|
|
- transformers
|
|
|
|
datasets:
|
|
- IlyaGusev/gazeta
|
|
- zloelias/lenta-ru
|
|
|
|
license: mit
|
|
base_model: cointegrated/rubert-tiny2
|
|
|
|
---
|
|
|
|
## Базовый Bert для Semantic text similarity (STS) на CPU
|
|
|
|
Базовая модель BERT для расчетов компактных эмбеддингов предложений на русском языке. Модель основана на [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) - имеет аналогичные размеры контекста (2048) и ембеддинга (312), количество слоев увеличено с 3 до 7.
|
|
|
|
|
|
## Использование модели с библиотекой `transformers`:
|
|
|
|
```python
|
|
# pip install transformers sentencepiece
|
|
import torch
|
|
from transformers import AutoTokenizer, AutoModel
|
|
tokenizer = AutoTokenizer.from_pretrained("sergeyzh/rubert-mini-sts")
|
|
model = AutoModel.from_pretrained("sergeyzh/rubert-mini-sts")
|
|
# model.cuda() # uncomment it if you have a GPU
|
|
|
|
def embed_bert_cls(text, model, tokenizer):
|
|
t = tokenizer(text, padding=True, truncation=True, return_tensors='pt')
|
|
with torch.no_grad():
|
|
model_output = model(**{k: v.to(model.device) for k, v in t.items()})
|
|
embeddings = model_output.last_hidden_state[:, 0, :]
|
|
embeddings = torch.nn.functional.normalize(embeddings)
|
|
return embeddings[0].cpu().numpy()
|
|
|
|
print(embed_bert_cls('привет мир', model, tokenizer).shape)
|
|
# (312,)
|
|
```
|
|
|
|
## Использование с `sentence_transformers`:
|
|
```Python
|
|
from sentence_transformers import SentenceTransformer, util
|
|
|
|
model = SentenceTransformer('sergeyzh/rubert-mini-sts')
|
|
|
|
sentences = ["привет мир", "hello world", "здравствуй вселенная"]
|
|
embeddings = model.encode(sentences)
|
|
print(util.dot_score(embeddings, embeddings))
|
|
```
|
|
|
|
## Метрики
|
|
Оценки модели на бенчмарке [encodechka](https://github.com/avidale/encodechka):
|
|
|
|
| Модель | STS | PI | NLI | SA | TI |
|
|
|:---------------------------------|:---------:|:---------:|:---------:|:---------:|:---------:|
|
|
| [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 0.862 | 0.727 | 0.473 | 0.810 | 0.979 |
|
|
| [sergeyzh/LaBSE-ru-sts](https://huggingface.co/sergeyzh/LaBSE-ru-sts) | 0.845 | 0.737 | 0.481 | 0.805 | 0.957 |
|
|
| **sergeyzh/rubert-mini-sts** | 0.815 | 0.723 | 0.477 | 0.791 | 0.949 |
|
|
| [sergeyzh/rubert-tiny-sts](https://huggingface.co/sergeyzh/rubert-tiny-sts) | 0.797 | 0.702 | 0.453 | 0.778 | 0.946 |
|
|
| [Tochka-AI/ruRoPEBert-e5-base-512](https://huggingface.co/Tochka-AI/ruRoPEBert-e5-base-512) | 0.793 | 0.704 | 0.457 | 0.803 | 0.970 |
|
|
| [cointegrated/LaBSE-en-ru](https://huggingface.co/cointegrated/LaBSE-en-ru) | 0.794 | 0.659 | 0.431 | 0.761 | 0.946 |
|
|
| [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) | 0.750 | 0.651 | 0.417 | 0.737 | 0.937 |
|
|
|
|
**Задачи:**
|
|
|
|
- Semantic text similarity (**STS**);
|
|
- Paraphrase identification (**PI**);
|
|
- Natural language inference (**NLI**);
|
|
- Sentiment analysis (**SA**);
|
|
- Toxicity identification (**TI**).
|
|
|
|
## Быстродействие и размеры
|
|
|
|
На бенчмарке [encodechka](https://github.com/avidale/encodechka):
|
|
|
|
| Модель | CPU | GPU | size | dim | n_ctx | n_vocab |
|
|
|:---------------------------------|----------:|----------:|----------:|----------:|----------:|----------:|
|
|
| [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 149.026 | 15.629 | 2136 | 1024 | 514 | 250002 |
|
|
| [sergeyzh/LaBSE-ru-sts](https://huggingface.co/sergeyzh/LaBSE-ru-sts) | 42.835 | 8.561 | 490 | 768 | 512 | 55083 |
|
|
| **sergeyzh/rubert-mini-sts** | **6.417** | **5.517** | **123** | **312** | **2048** | **83828** |
|
|
| [sergeyzh/rubert-tiny-sts](https://huggingface.co/sergeyzh/rubert-tiny-sts) | 3.208 | 3.379 | 111 | 312 | 2048 | 83828 |
|
|
| [Tochka-AI/ruRoPEBert-e5-base-512](https://huggingface.co/Tochka-AI/ruRoPEBert-e5-base-512) | 43.314 | 9.338 | 532 | 768 | 512 | 69382 |
|
|
| [cointegrated/LaBSE-en-ru](https://huggingface.co/cointegrated/LaBSE-en-ru) | 42.867 | 8.549 | 490 | 768 | 512 | 55083 |
|
|
| [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) | 3.212 | 3.384 | 111 | 312 | 2048 | 83828 |
|
|
|
|
|
|
|
|
|
|
|